r-1
*I
&5,
-
-
T
F ﬂ
r.l.
.
.r-
-
s
-..
=
¥ -
5
&
I
-
=
y:
=
=,
g
e
]
iy

Ferres Bavpslon

O'REILLY"

JavaServer Pages™, 2nd Edition

Hans Bergsten
Publisher: O'Reilly
August 2002

ISBN: 0-596-00317-X, 684 pages

Filled with useful examples and the depth, clarity, and attention to detail that made the first
edition so popular with web developers, JavaServer Pages, 2nd Edition is completely revised
and updated to cover the substantial changes in the 1.2 version of the JSP specifications, and
includes coverage of the new JSTL Tag libraries-an eagerly anticipated standard set of JSP
elements for the tasks needed in most JSP applications, as well as thorough coverage of
Custom Tag Libraries.

Copyright © 2002, 2001 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales
promotional use. Online editions are also available for most titles (http://safari.oreilly.com).
For more information contact our corporate/institutional sales department: 800-998-9938 or
corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other
countries. O'Reilly &x Associates, Inc., is independent of Sun Microsystems. Openwave,
the Openwave logo, and UP.SDK are trademarks of Openwave Systems Inc. All rights
reserved.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O'Reilly
& Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps. The association between the image of a grey wolf and the topic of JavaServer
Pages is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the author assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Table of Contents

Table of Contents

g) 1 T 1
What's i the BOOKoouiiiiiiiiieiieeeee et 2
Readers of the First EQTtION..........ooiiiiiiiiiii e 2
AUIEIICR. ...ttt st sb ettt b ettt b ettt sbe et 3
OF@ANIZATION ..c..vveeeeiieeetie e et et e et ee ettt e et e e e tteeeteeeesseeessseeensseessseeesseeensseesnsseesnsaeennseesnnns 4
About the EXamMPIEscooiiiiiiiiiiiiieceee ettt et 8
Conventions Used in This BOOK.........ccoiiiiiiiiiiie e 8
HOW 0 CONACT US ..ottt 9
Acknowledgments for First EAitioncccueeiiiiiiiiieiiccce e 9
Acknowledgments for Second Edition............ccceviieiiiiiiiiiiiiiciicciceeeeee e 10
Part I: JSP Application BaSiCsccccevvvnrieciisnniccssssnnicssssnnnecsssssssecssssssssssssssssesssssssssssssssssssssns 12
Chapter 1. Introducing JavaServer Pagesccccceeeeeevvvunrcccssnnrccscnnns 13
1.1 What IS JavaServer Pages?.........cooiiieiiieiieecieeee ettt 13
1.2 WRHY USE JSP? ..ttt sttt sttt st 14
1.2.1 Embedding Dynamic Elements in HTML Pagesccccocovievviiencieeciieeieens 14
1.2.2 COMPIAtIONtiiiiiiiieiie ettt et ettt et et e et eesaeeebeessaeenseesnneens 15
1.2.3 Using the Right Person for Each Taskccccoeevieviiiiiiiiiieee e 15
1.2.4 Integration with Enterprise Java APIS........cccooviieiiiiiiiienieeeeeee e 16
1.2.5 Other SOIULIONScoiutiitiiiieeiie ettt st s e e 16
1.2.6 The JSP AdVANtAZEc.eoeiiieiieiieciieie ettt ettt seae s 18
1.3 What You Need to Get Started...........coooueiiiiiiiiiieiiieeeeee e 18
Chapter 2. HTTP and Servlet BasiCS......cccouvvericsissniicscssnnicsssssssecsssssssesssssssssssssssssssssssssess 20
2.1 The HTTP Request/Response Model............ooeovieeiiiieiiiieeiiieceeecee e 20
2.1.1 Requests in Detail........cc.eeiiiiiiieiiieiiecieeeeee ettt 21
2.1.2 Responses in Detailcccuiiiiiiiiiiiiciieceeeeeee e 23
2.1.3 Request Parametersc.eeeruiiiiiieiiiieeiiee ettt ettt e 25
2.1.4 Request MEthOdSuiiiiiieiiiieciie ettt e e e sareeesaeeeas 25
2.2 SEIVIEES ..ottt ettt st b e et sh et et e bt 27
2.2.1 Advantages over Other Server-Side Technologiesccoccveeveieerciieencieeennnen. 27
2.2.2 Serv1et CONAINETSco.vevieieeiieieeiesitenieeie ettt et sttt et e sbe et sieesbeeaeesaeenaeenees 29
2.2.3 Servlet Contexts and Web Applications...........ceccveeeviieerciieenciieeriie e 30
Chapter 3. JSP OVeI'VIEW....uueiiieiisericcsssnnnecsssssicsssssssesss 32
3.1 The Problem with SETVIEtscccooiiiiiiiiiii e 32
3.2 The Anatomy of @ JSP Page.......cceoviiiiiiieiieiecee et 34
3.3 JSP PrOCESSING....cccuviieiiieeiiieeiieeeitteeeetteeetteeeteeestaeesaeeesstaeessseeesssaeesssaeesseeassaeesseens 34
3.3 1 ISP ELBIMENILS ..ottt sttt 35
3.4 JSP Application Design With MVCccooiiiiiiiiieeeecee e 37
Chapter 4. Setting Up the JSP Environment...........ccoceeecesisnrecssssnsrccsssnsscssssasssssssssssees 39
4.1 Installing the Java Software Development Kit...........ccccoeviiieiiiiiniiieeieeeee e 39
4.2 Installing the TOmMCAat SEIVETcccuieriiiiiieie ettt 40
4.2.1 WIndows Platformscooueoiiiiiiiiie e 41
4.2.2 Unix Platforms (Including Linux and Mac OS X))cccceoeeviiniinerienienieieneene 43
4.3 TeStING TOMCAL.....ccuiieiiiieeiieeeie e et etee e etee et eesteeessbeeessseeesseeesaeeesaeessseeensns 43
4.4 Installing the Book EXamplesccceeiiiiiiiiiieiiieiice et 45

4.5 Example Web Application OVETVIEWccceecvieriieeiieniieeiieniieeveenieeereesieeeseessneensees 47

Table of Contents

Part II: JSP Application Development.........coeeeieeeninnsensnensnecssnsssaessncsssessssssssssssacsssssssees 49
Chapter 5. Generating Dynamic CONtentceoueeneeiseensenssnensnnsssessaessssesssessssssssssssscens 50
5.1 Creating @ JSP Page........cociiiiiiiiiiiiiiece e 50
5.2 Installing @ JSP Pccuviiiiiiiieiiececeeee ettt 51
5.3 Running a JSP Page........coviiiiiiiiiiiiiitc e 52
5.4 Using JSP Directive EICMENLS.........ccccocuiiriiieiiieiiieieecieeieeeee et 53
5.4.1 JSP COMIMENES.....cciiuiiiiiiieiiiieeiie ettt ettt ettt st e st e s e s e e 54

5.5 USING TeMPIAte TEXE....ceeiuiiieiiieeeiieeeiieeeiee ettt e et eetae e s e e e s aeeesaeeesnseeennseeenes 55
5.6 Using JSP Action EI@MENtS.......cccccoueriiriiiiiiiiniiiieniesiteeetesieee e 55
5.6.1 JSP Standard Tag LiDIarycccceevieriieniieeiieieeeie et 57
Chapter 6. Using JavaBeans Components in JSP Pagescc.cccceeverivcvrcscercscnnrcscnnrcsnns 60
6.1 What IS @ BEANT.......coiiiiiiiieiieeetee ettt et s 60
6.2 Declaring a Bean in @ JSP Pageccccooiiniiiiiiiiiicccececeeeee e 62
6.3 Reading Bean Properti€scveviiiiieiieeiiienieeieeeee ettt eveesieeebeeseaesvaesana e 62
6.3.1 Using the <jsp:getProperty™ ACHION.......cccevviirierieiiniiieeerteseeeeee e 63
6.3.2 Using the JSTL Expression Languageccceeeveevieeieenieeiiienieereeseesveeneneens 64
6.3.3 Including Images With JSPc..ccciiiiiiiiiiiiiiceeeeee e 65

6.4 Setting Bean ProPertiesccierieiiieiiieeiieiie ettt ettt etee sttt beeseeseseenaea e 65
6.4.1 Automatic TypPe CONVETSIONS......cccevirererieeiireeiieeeireeeteeesseeesreeessseeessseeensseesnnns 67
Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library 68
7.1 What Is a Custom Tag Library?cccceecuiiiiiieeiiieeceeeeee ettt 68
7.2 Installing a Custom Tag Libraryccceecuieriiiiiienieeiieie et 70
7.3 Declaring a Custom Tag Library.........cccccecueeeiieeeiiieeiieeiee et 70
7.3.1 Identifying a Custom Tag Library in a JSP 1.1 Container.............ccceecveeeurennnnne 72

7.4 Using Actions from a Tag Libraryccccceeeeiiiiiciiieiiii e 73
7.4.1 Setting Action Attribute ValUuesccoecvieiiiiiieiiieeiecie e 74
7.4.2 The JSP Standard Tag Librarycccccccvieeiieeiiieeieeeeeeee e 75
7.4.3 Using Beans or CuStom ACHONScceeervierieeiiienieeieeeieeieeeeeeieesreesieesseeeseenns 78
Chapter 8. Processing Input and Output 80
8.1 Reading Request Parameter Valuesc.coovveiiiniieiiieniieiiece e 80
8.1.1 Accessing Parameter Values with JSTL AcCtions.........cccccecveeevciieenieeeniie e, 82
8.1.2 Accessing Other Request Data..........c.coovieciieiiiiiiiiieciiee et 86
8.1.3 Capturing Parameter Values Using a Bean...........ccccecvveeciiincieiciie e 89

8.2 Validating USer INPULcccuiiiiiiiiiiieiieeie ettt eeaeesabe e e 91
8.2.1 Validating User Input Using JSTL ACtIONScoovveeriieeiiieeiieeiee e 92
8.2.2 Validating User Input Using a Beancccceeeuierieeiiienieeiieieeiceie e 97

8.3 Formatting HTML OULPUL........cooiiieiiieeiie ettt e e 101
Chapter 9. Error Handling and Debugging..........ccccceevvuvricnisnnrccscsnnscssssnnsecssssssnecssnnses 103
9.1 Dealing with Syntax EITOTScccviiiiiiiiiiie ettt 103
9.1.1 Element Syntax EITOTScccoeiiiiiiiiiiieeiienie ettt 103
9.1.2 JSTL Expression Language Syntax EITOTs........cccccceveeriiiieniieeniee e 107

9.2 Debugging a JSP APPLICAtIONcc.eeeiieiiiieiieiieeiieee ettt e 110
9.3 Dealing with RUNtiMe EITOrsScoiiiiiiiiiicciie et 115
0.3.1 Catching EXCEPLIONS.......cccuieriiieiieiieeiieeiie ettt ettt e ete et e seteeteesaaeesbeeennes 119
Chapter 10. Sharing Data Between JSP Pages, Requests, and Users.........ccccceeeeeuerene 121
10.1 Passing Control and Data Between Pages.........ccccceevciievieiiiinieniieiecieeieeeeene 121
10.1.1 Passing Control from One Page to Another..........ccccoeeevvveviieeiiiicieeeeee 122
10.1.2 Passing Data from One Page to Another..........ccccooveeviiiiiiiniiiinieiiieeeeee 124
10.1.3 All TOZELhET INOW.......oiiiiiieeiieeiieeeieeetee ettt ee e tee e rae e sve e e seseeennseeenneas 126

il

Table of Contents

10.2 Sharing Session and Application Data...........cccceeevveeviieniiinienieeieecee e 128
10.2.1 Session Tracking EXplained.........c..coccerieririiniiniiiiniieceeeecceeeeeeee 129
10.2.2 Counting Page HitS........ccveviiiiiieiieiiecieeite ettt 132
10.2.3 URL REWITHINZ ..cveeiiiiiiiieieeiieriteieetesit ettt s 134

10.3 ONINE SROPPING....eiiiiiiiieiieiieeie ettt ettt et e eaeebeesaaeebeessaeenseessseenseensnas 137
10.3.1 Number FOrmattingccocueeuieiiiiiieiii et 141
10.3.2 Using a Request Parameter as an IndeXcccceevieeciieniiiiieniecieccie e, 142
10.3.3 Redirect Versus FOrward............cooviiiiiiiiiiiieiiiecceeeeee e 145

10.4 Memory Usage Considerationsc.eeeeeevueerieriueerienieenieeeieenseesseesseessneesseessnes 145

Chapter 11. Accessing a Databasecccveeeivercnsvnnicssnrcsssnnessnscssssrsssssssssssssssssssssssssssssssns 148

11.1 Accessing a Database from a JSP Page.........cccccveviiiiiiiiiiciiiiececeeceee 148
11.1.1 Application Architecture Example.........ccccooouiiiiiniiiiiiiniiieeeeeen 149
11.1.2 Table EXAMPIC.....cccieiiieiiieiieiieeieeieeete ettt eiaeesaeeennes 150
11.1.3 The DataSource Interface and JDBC DIIVETSccevuveeeeuiieriiieeciieeeiee e 151
11.1.4 Reading and Storing Information in a Databasecccceeevverieriienieenneenne. 155
11.1.5 Generating HTML from a Query Result...........ccoceeviniiniiiiniiniiniiicneeee 163
11.1.6 Searching for Rows Based on Partial Information..............cccoeeeveveiieneeennennne. 166
11.1.7 Deleting Database Informationccccceeruieiieniienieniieieeieee e 167
11.1.8 Displaying Database Data over Multiple Pages.........ccccceceveeiiniiiniencniiennnn. 169

11.2 Validating Complex Input Without a Bean............cccceeeviiiiiiiiniiiiie e, 173

11.3 USING TranSaCtioNScc.eeeuieriieiiieiieeiieeiteeteeiteeiteeteesaeeteeseeeeseeseseenseesseesnseensnas 177

11.4 Application-Specific Database ACHIONScccceevieeiieeeiiieciie e 178

Chapter 12. Authentication and Personalizationccoeeicciccsnnnccsssnnrcssssnnneccscnnnes 180

12.1 Container-Provided Authentication...........ccoceerieiiiiiieniiiiieieeeee e 180
12.1.1 Authenticating USETScecveeiieriieeiieniieeieesiteeieesieeeteesieeesreeseaeeseesaseenaeesnnes 180
12.1.2 Controlling Access to Web ReSOUICESc.eeeeviiieiiieeiiieeiie e 182

12.2 Application-Controlled Authentication............ccceeveeeiieriieiiienieeieerie e 185
12.2.1 A Table for Personalized Information............cccoeeeiiiiniiiiiiniiiiieniieeeeee 187
12.2.2 LOZEING IN .ottt et e eaae e 187
12.2.3 Authentication Using a Databaseccccueeviieeiciieeciiieceeeciee e 190
12.2.4 Checking for a Valid SeSSI0Mc.ceviiiiiieiiieiieeii et 195
12.2.5 Updating the User Profile..........cccoeviiieiiiiiciieeiieeeeee e 199
12.2.6 LOZEING OUL ...coeviiniiieiiieciie ettt ettt ettt e ssaeeteeentaesbeesaneennes 201

12.3 Other SECUITtY CONCEITIScevuvveererieeriieeeieeerireeeeteeesiteeesareesseeesssesesssaeessseeesssessnsees 202

Chapter 13. InternationaliZationcccoveiicciinnnnicssssnnicssssssnecssssssssssssssssssssssssssssssases 203

13.1 How Java Supports Internationalization and Localization.............c.cccceecvveeruveennnee. 204
13.1.1 The Locale CIaSScccueriiriiiiirieniieieeiesieete ettt s 204
13.1.2 Formatting Numbers and Dates............cceevviiiiiiiieriieeiie e 206
13.1.3 Using Localized TeXtc.ceeoueeiiieriieiierie ettt 206

13.2 Generating Localized OULPULoevcuiieeiiieeiiie et e 207
13.2.1 Using One Page for Multiple Localesccceviiriieniieniiniieieeieeeeeeene 209
13.2.2 Using a Separate Page per Locale........c.ccoocviviviiiiniiieeiieceeeeeee e 222

13.3 A Brief HiStory OF BitS.....cc.ceiiiiiiiiieeiieiie ettt 223

13.4 Handling Localized INPUL.........ccooviiiiiiiiiiiiiecee ettt e 225
13.4.1 Dealing with Non-Western European Input............ccceeevievieniiiiieniienceeieenne, 229

Chapter 14. Working with XML Data 234

14.1 Generating an XML RESPONSEcccueeruiieiieiiieiiieiieeieeriie et esiee e eve e eere s 234

14.2 Transforming XML into HTMLccoooiiiiiiiieieeeeee e 236

14.3 Transforming XML into a Device-Dependent Formatccccccevvevieniiniennene. 240

il

Table of Contents

14.4 Processing XML Dataccocuiieriiiiiiieeiieeieeeeeee et e 242
14.4.1 Caching Data.......cc.coeiiiiiiiiiiiieienteeeeeee ettt 245
14.4.2 Parsing XIML Dataccc.coviiiiiiiiiiiiieeciee ettt 245
14.4.3 Accessing XML Data Using XPath EXpressionscccccecveveeveneeneenennenne. 246

Chapter 15. Using Scripting EICIENLScoueevvuervernreninensenssnncsenssnesssecsssesssessssesssesnns 253

15.1 Using page Directive Scripting AHrIDULEScoeevueriiriiniieiinierieeieeceeeeeeee 253

15.2 Implicit JSP Scripting ObBJECESccuveruiieiiieiiieiiieeieeieeeee et ereeere e e seaeeree e 254

15.3 USING SCIIPLIELS .ottt st s 256

15.4 USING EXPIESSIONS ..eevvvieeiiiieiiieeeiiieeeieeeeiteeeiteeeiteeeiteesaaeesnsaeesssaeesssaeessseesnssessnsees 258

15.5 USING DEClarationsc..cecueriiriiiiieieneerieeteeie ettt 258
15.5.1 jspInit() and JSPDESIIOY() .eevveevierereeirieeiieniieeiieeiee ettt e ereeeeeere e ebe e 261

15.6 Mixing Action Elements and Scripting Elementsc..cccccocevieieniiniincnncneenne. 262
15.6.1 Using an Expression Element to Set an Attribute...........ccceeevvevierciieniennenne. 262
15.6.2 Using JSTL with Request-Time Attribute Valuescccceeveevenienennicnnenne. 263
15.6.3 Accessing Scoped Variables in Scripting Codeccceevieeiienieiniienieeieeen. 264

15.7 Dealing with Scripting Syntax EITorsccccocevieviniiniiieiiineieececeeeeeeee 266
15.7.1 Scripting Syntax Error EXamples..........ccecveviieiienienciieniecieesiie e 269

Chapter 16. Bits and Piecesc..cccevverecrvercssercssnrcssnrcsssnscssssscsassns 273

LO.1 BUFTETING ..ottt ettt et e st ebeesaae e b e eneas 273

16.2 Including Page Fragments...........ccueeiiiieiiieeiiieeieeeee et e e 275

16.3 Mixing Client-Side and Server-Side Code........c.cocvveiiiriiiiiiiniieiieie e 280
16.3.1 Generating JavaScript Code.......uuiiuiiieiiiieiieeeiie ettt 281
16.3.2 USING JAVA APPIELS..eouiiiiiiiiiiiieeieeieeee ettt ettt 287

16.4 Precompiling JSP Pagescccuvieiiiieiiieciieee et 288

16.5 Preventing Caching of JSP Pages........ccccocuveiiiiiiiiiieniieeeeceee e 291

16.6 Writing JSP Pages as XML DOCUMENLS.........c.cceevuiieriieeiiiecieeeeiee e 293

16.7 How URIS Are INterpretedcocuieiieeiieiiieieeieceeee et 295

Part III: JSP in J2EE and JSP Component Developmentccccccveeeccscsnnnccsscnssecsnns 298
Chapter 17. Web Application ModelSc.ceeieeiivvnricisssnricssssnnrecsssssssscssssnssessssssssssssnses 299

17.1 The Java 2 Enterprise Edition Model...........cccooviiiiiiiiiiiiecieceece e 299

17.2 The MVC Design MOdel........c..oocuiiiiiiiiieiieeiteie et 301
17.2.1 USING ONLY JSP ..ot 302
17.2.2 Using Serviets and JSP........coooiiiiiiiiiiiiee e 303
17.2.3 Using Servlets, JSP, and EJBccccoooiiiiiiiee e 304

17.3 SCAlADIIIEYeieiiieiie ettt sttt et es 305
17.3.1 Preparing for Distributed Deployment...........ccccueeevveeeiiieincieeeiie e 308

Chapter 18. Combining JSP and Servlets........ccueiicervvnricsissnnrecsssnnncsssssnnecssssssecssnnsns 310

18.1 Servlets, Filters, and LiSTEINETSeviiiiiiiiiiiiiieieeeee et eeeeannes 310
18.1.1 Servlet LIfECYCIE ...ueeiuiiiiiiiieiieetee ettt e 310
18.1.2 Compiling and Installing @ Servlet...........cccovrvviieeiiiieiiieee e, 312
18.1.3 Reading @ REQUESE........ccciiiiiiiiieiiecie ettt 313
18.1.4 Generating @ RESPONSEccuveivuiiiiiiieciie ettt e s ee e aee e e e as 315
18.1.5 Using Filters and LiStENeTs.........cccueeruieriieniieeiieiie et 317
18.1.6 Sharing Data Between the Component TypPes.......ccveevveeeieeeniieeeniieeenieeeenenns 318

18.2 Picking the Right Component Type for Each Task..........ccccoovininiiiiniiniinnne. 320

18.3 Initializing Shared Resources Using a LiStenercccccveevviieeeiieenieeesiie e 322

18.4 Access Control Using @ Filterceevuiiiiieiiiiiieiiecieeeeeeee e 324

v

Table of Contents

18.5 Centralized Request Processing Using a Servlet..........ccoceveieviiniiienieeiienieeieenne, 328
18.5.1 Struts Request Processing OVEIrVIEW.......c..cocueeiiriirieriinieenieeienieenieere e 329
18.5.2 Mapping Application Requests to the Servlet..........ccccveviieviieniinciienieeienne, 330
18.5.3 Dispatching Requests to an Action Class..........ccccevvereivienienennenicneeieneee. 332
18.5.4 Implementing the Action Classes.........ccveruieeiierieeiieerieeieeeie e eiee e 334
18.5.5 Processing REQUESEScccuiiiieiiiiiieiie ettt 337
18.5.6 Calling the Controller Servlet from JSP Pagesccccoeevveviiiiiinciieiieeiee, 338

18.6 Using a Common JSP Error Pagec..ccccoviiiiiiiniiniiiiiiiiccccnecceeeeeee 340

Chapter 19. Developing JavaBeans Components for JSPvveerveenreeesercsnensenennne 343

19.1 Beans as JSP COMPONENLS.......ccceeriiriiiriieiienieeieeeteetee et 343
19.1.1 JavaBeans Naming CONVENTIONScccvierueerieerieenieenieenieeneesereeseessneeneennnes 344
19.1.2 Compiling and Installing a Bean.........c..cccceoieiiniininiiniiniicecececee 348

19.2 JSP Bean EXamPIes.......ccociiiiiiieiiieiiie ettt 348
19.2.1 Value BRANS....c.uiiiiiieiiiiiieiie ettt ettt sttt 349
19.2.2 Uity BRANS...ccuiiieiiieiiiie ettt ettt e e tae e aeeenveeeanee s 351
19.2.3 Multithreading Considerations............cecueeeeruerieneenieneeneeieeeneenee e 355

19.3 Unexpected <jsp:setProperty™ Behavior...........ccoecvveviiiiiiniiiiiiciiceeceeeee e 356

Chapter 20. Developing Custom Tag Libraries........ccccccceervercccsencssercsssercssnrcsssnscsssescses 359

20.1 Tag EXtension BaSICScccuieriieriiiiiieniieeiiesiie ettt ettt sese e 359

20.2 Developing a SIMPIe ACHONeeecuiiiiiiiieeiiee et eaee e e e e eereeeeree e 362

20.3 Developing an Iterating ACHONcoovieiiierieeiieie ettt 365

20.4 Processing the Action BOAYccccueieiiiiiiiiieiieeeeeeeee e 368
20.4.1 Dealing with Empty EIements...........ccccccveiiieiiiniiieniieiiieiecieee e 373

20.5 Handling EXCEPLIONSeeeiuiiiiiiieeiiieeiiie ettt e esiteeeiee s teeesteeesiaeeesnseeessseeesseeensnaeenns 374

20.6 The Tag-Handler Lifecycle and What It Means to YOU........ccccevervierieneenenieneene 376
20.6.1 Providing Default Values for Optional Attributescccccveevcvieeriieerveeennen. 377
20.6.2 Resetting Per-Invocation State............eecvieriieeiieniieeiieiieeie e 378
20.6.3 Keeping Expensive Resources for the Lifetime of the Tag Handler Instance 378

20.7 Creating the Tag Library DeSCriptor.......cc.eeriieriierieeiierieeiieeeie e 379
20.7.1 General Library EICMENtScccceeiiiiiiiiieeiiieeiieeeieeeciee e 380
20.7.2 Validator and Listener EIementscccccooveveriienieniininienieeeieeeeeeeesne 381
20.7.3 TAZ EICMENLSc.uvieieiieeiiieeiiie et ettt eit e e tte e et e e et e e ssaeeessbaeessaeeessseeensseeennes 381
20.7.4 Differences Between a JSP 1.1 and a JSP 1.2 TLD ...ccccoceviiviininiinicieene 383

20.8 Packaging and Installing a Tag Librarycccccocvieeiiiieniiieciee e 383
20.8.1 Making the Tag Library Files Available to the Containercccceeueneee 383
20.8.2 Identifying the Tag Library in @ JSP Pageccccccvvvevviiinciiieieee e, 384
20.8.3 Packaging Multiple Libraries in One JAR File......ccccoceviiiiiiiniininiincnnne. 385

Chapter 21. Advanced Custom Tag Library Featuresccooeecveeseecseecsseecsnensnennne 387

21.1 Developing Cooperating ACHONScccueeruierieeriienieeieeneeeieesieeereesieeebeesaeeenveenens 387
21.1.1 Using Explicit Parent-Child Cooperationcccceeeevveerieeerieeenieeeeeee e 387
21.1.2 Using Implicit Cooperation Through Variables.........c.cccoceeverveniininicnienene 390

21.2 Validating SYNEAXcccueeeiiieiiiieeiieeeiee et e esteeeieeessieeeetaeesaeeessseeessseeessseeenssaeenns 397
21.2.1 Validation Based on the TLD........ccccooiiiiiiiiniiiiiieieieeceeeeeee e 398
21.2.2 Using a TagLibraryValidatorcccecovieiiiieeiiiecieecee et 398
21.2.3 Using a TagExtralnfo Class for Validation.............cccceecerveniininiiniencnnennne 401

21.3 Using a Listener in @ Tag Libraryccccccveeeiieeiiieeiiieceeeee e 402

21.4 Dynamic Attribute Values and TYPeSccceeecvierieiriieriieiieeieeieeee et 403
21.4.1 Conversions Performed by the Containerccccoeeeeiiieeiiieencieenie e, 404
21.4.2 Using a PropertyEditor for COnvVerSion............ceecueeruierieeniienieenieeieesee e 406

Table of Contents

Chapter 22. Integrating Custom Code With JSTLcuueieenvensenninensecnsnensnnssaensanennne 408
22.1 Using the Expression Language in Custom ACHONScc.cecuereerienierieneeneniennns 408
22.2 Setting and Using Configuration Variablesccccceeviieiiieniiniieenieeiienieeeene 410
22.3 Integrating Custom Conditional ACtIONS.........coceevervieriinierierienieeeeeeene e 412
22.4 Integrating Custom [teration ACHONSccveeruierieeiiienieeiieciie e eee e eee e 413

22.4.1 Implementing a Custom Iteration ACtion..........cceceevuervienieneniienieneeienienene 414
22.4.2 Interacting with an [teration ACtiONccccueeeriieeriieniieeeieece e 418
22.5 Integrating Custom I18N ACLIONScooueeiiriiriiiirierieecece et 420
22.6 Integrating Custom Database ACHONS.........cccueevierieeiieerieeieeiie e 422
22.7 Using JSTL Tag Library Validators.........ccccecerierernieniinieiienienecieeeeeieesie e 423

Chapter 23. Database AcCeSsS StrateGies.....ueenrenrenssenssnessresssnsssaesssncsssesssnssssasssnssssassans 426
23.1 JDBEC BASICS..ceuuiiiiieiiieiiesiie ettt ettt ettt ettt et et e et e bt e et e e beesnbeeaeeenbeenees 426
23.2 Using Connections and Connection PooISccceevuieriieiiieiiicieciecieeeeeeene 429

23.2.1 Using a JDBC 2.0 Optional Package Connection Pool.........c..ccccceceenieiennnene. 431
23.2.2 Making a JDBC 1.0 Connection Pool Behave as a JDBC 2.0
Connection POOLcocuiiiiiiiiie e 432
23.3 Making a Connection Pool Available to Application Components........................ 437
23.3.1 Using an Application Scope Variablec.cccoceeviriinieiiniininiciicecicneen 437
23.3. 2 USING INDI....ooiiiiiiiieieee ettt et ettt et et e e enes 439
23.4 Using a Generic Database Beanccccvviiiiiiiiiiiiiieecie e 444
23.5 Developing Application-Specific Database Components............cccceeveevereeneernnene 447

Part IV: APPENAIXeS....ueiicrcssrrecssssseresssssssecsssssssesss 451

Appendix A. JSP Elements Reference 452
AT Directive EISMENtScccuiiiiiiiiiiiiiiee e 452
A2 Scripting EICMENESooviiiiiiiiiiiieeiieie ettt ettt e 455
A3 Action ELICMENLSooiiiiiiiiiiiiee e e 457

AL3.T CUSLOM ACHONS ..ttt sttt ettt sttt b et saeenee et 466
A4 COMIMEIIES......eeiiiiiiiiie ettt ettt e ettt e st e e st e e sabeeesabeeesateeebbeeeneeenane 466
ALS ESCAPE CharaCters.....ccueieiieiiieeiieiieeiieriie ettt et eite et e siae et e e e enbeessaeenneesaeeenseennes 467

Appendix B. JSTL Actions and API Reference..........ieiicncnicssencssnncsssncssssncssssscnes 468
B.1 JSTL Library URIs and Default Prefixescccoocvveeieniieciiinieciieiecieeee e 468
B.2 Core LibDrary ACLIONSueeeciieeiiieeiiieeiiee ettt e esiteeeieeeeaeeesseeessseeessseeessseeessseesnsseennns 468
B.3 Internationalization and Formatting ACtions..........c.ceecveevieeriieriienieenieeieeiee e 480
B.4 Database ACCESS ACTIONS ...c..ueiuieiiiieiieiieetie et eite ettt ettt e steesbeesbe e it e sabeenaeeenee 493
B.5 XML ProcessSing ACHIONS.cccueeuieruieeiteeniieetieeteeteeseeeseessseeseessseenseesssessseessseenne 499
B.6 Support and UtIEY TYPES.....ccccuiieiiieeeiieeiiieeiiee ettt eiee e ree e evee v e e seaee e 507
B.7 Configuration SEttINGScccueevieiiieiiieiieeiieeie ettt et 514

Appendix C. JSTL Expression Language Reference...........ceeccvcrccssencsssnrcssnnrcssnnnenes 518
O BN 112 b QOO OO UPPRRTPR 518

Gl LIEETALS .ottt ettt ettt et et e e e beesanean 518
C.1.2 Keywords and Reserved WOordsccceeeiieniieeiienieeieeieeeeeee e 519
C.2 VaATIADIES ...ttt ettt ettt e eaeas 519
C.2.1 ImPICit Variablescccuieiiieiiiiieeiiese ettt s 519
LG I D 1 - T) o1 PP USPRRRPPPSP 520
C.3.1 Coercion RUIEScoeeriiiiiiiiiieieiiesicee e et 520
C.4 Expressions and OPETALOTSeeecvveeeeureeriiiresieeenieeesteeessreesssseesseeesseeessseessssessssses 521
C.4.1 Operand Coercing RUIES..........ccceeriiiiiiiiieiieeieeieee et 522

vi

Table of Contents

Appendix D. JSP API Reference 524
D.1 Implicit Variablescociiiiiiiiiiiieiee et e 524
D.2 Other Servlet Types Accessible Through Implicit Variables...........c.cccccverueennnennne. 546
D.3 Tag Handler TYPES ...ccueeuieeiieiieeiteite ettt ettt ettt et 550
D.4 Tag Library Validation TYPEsccceeeriiriiiieeiiieeiiieeieeeite et esvee e eiiee e 567
D.5 Other JSP TYPES ..ccuveeiiiiiiiieieeiteteeeet ettt sttt st s 569

Appendix E. Book Example Custom Actions and API Reference...........cceeuveevensunennee 575
E.1 Generic CuStOM ACHIONSccueeruiieiieeiiieiie et ette et etteeteesieeeteebeeeabeesseesnneenaeesnseenees 575
E.2 Generic ULty CLASSEScccveiiiiriieeiieiieeie ettt ettt ve et e eve e seaeeaeeenveenes 584

Appendix F. Web Application Structure and Deployment Descriptor Reference..... 591
F.1 Web Application File Structurecccccveviieiienieeieeieeieesee et 591

F.1.1 Placing Java Class Files in the Right Directory.......c...coceverviniincniiniencnnne. 591

F.2 Web Application Deployment DeSCriptor.........cccuverueeeieerieeiiieiieeieenie e enee e 592
F.3 Creating @ WAR File....c..cooiiiiiiiiiiiee et 607

L O01] 117 1] 1 1) 1 [P ERY 608

vii

Preface

Preface

JavaServer PagesTM (JSP) is a technology for web application development that has received
a great deal of attention since it was first announced in 1999. Since then, it has gone through
two revisions. This book covers the 1.2 version of the specification.

Why is JSP so exciting? One reason is that JSP is Java-based, and JavaTM is well suited for
enterprise computing. In fact, JSP is a key part of the Java 2TM Enterprise Edition (J2EE)
platform and can take advantage of the many Java EnterpriseTM libraries, such as JDBCTM,
JNDITM, and Enterprise JavaBeansTM.

Another reason is that JSP supports a powerful model for developing web applications that
separates presentation from processing. Understanding why this is so important requires a bit
of a history lesson. In the early days of the Web, the only tool for developing dynamic web
content was the Common Gateway Interface (CGI). CGI outlined how a web server made user
input available to a program, as well as how the program provided the web server with
dynamically generated content to send back. CGI scripts were typically written in Perl. (In
fact, Perl/CGI scripts still drive numerous dynamic web sites.) However, CGI is not an
efficient solution. For every request, the web server has to create a new operating-system
process, load a Perl interpreter and the Perl script, execute the script, and then dispose of it
when it's done.

To provide a more efficient solution, various alternatives to CGI have been added to
programmers' toolboxes over the last few years: FastCGI, for example, runs each CGI
program in an external permanent process (or a pool of processes). In addition, mod perl
for Apache, NSAPI for Netscape, and ISAPI for Microsoft's IIS all run server-side programs
in the same process as the web server itself. While these solutions offer better performance
and scalability, each one is supported only by a subset of the popular web servers.

The Java Servlet API, introduced in early 1997, provides a solution to the portability issue.
However, all these technologies suffer from a common problem: HTML code embedded
inside programs. If you've ever looked at the code for a servlet, you've probably seen endless
calls to out.println () that contain scores of HTML tags. For the individual developer
working on a simple web site, this approach may work fine, but it makes it difficult for people
with different skills to work together to develop a web application.

This embedded HTML code is becoming a significant problem. As web sites become
increasingly complex and more critical to an organization's success, the appearance and
usability of the web interface becomes paramount. New client technologies, such as client-
side scripts and DHTML, are used to develop more responsive and interactive user interfaces,
style sheets can make it easier to globally change fonts and colors, and images make the
interface more appealing. At the same time, server-side code is getting more complex, and the
demands for reliability, performance, and fault tolerance are increasing. The increasing
complexity of web applications requires a development model that allows people with
different skills to cooperate efficiently.

JSP provides just such a development model, allowing web-page authors with skills in areas
such as client-side technologies and usability, to work in tandem with programmers who are
experienced in server-side technologies, such as multithreading, resource pooling, databases,

Preface

and caching. While there are other technologies, such as ASP, PHP, and ColdFusion, that
support similar development models, none offer all the advantages of JSP.

What's in the Book

This edition of the book covers Version 1.2 of the JSP specification, which was released in
September 2001. It also covers the related JSP Standard Tag Libraries (JSTL) specification,
Version 1.0, released in June 2002.

You will learn how to use all the JSP standard elements and features, including elements for
accessing JavaBeans components; separating the processing over multiple pages to increase
reusability and simplify maintenance; and sharing information between pages, requests, and
users. You will also learn how to use JSTL for tasks such as conditional processing,
integration of database data, internationalization, and XML processing, as well as how to
develop your own custom components for tasks not covered by the standard components.

The examples in this book guide you through solutions to common JSP design problems,
from basic issues, such as retrieving and validating user input, to more advanced areas, such
as developing a database-driven site, authenticating users, providing personalized content,
caching data for better performance, and implementing internationalization. The last part of
the book describes how you can combine JSP with other Java technologies; in particular, I
describe the combination of JSP and servlets using the popular Apache Struts framework, and
provide an overview of how JSP fits into the larger scope of J2EE.

Readers of the First Edition

If you've read the first edition of JavaServer Pages, you'll notice that, in this edition, most of
the custom components have been replaced in favor of the equivalent standard components
from JSTL -- a specification I've been lucky enough to contribute to and help shape the
standard based on many of the ideas explored in the first edition. You'll also notice that all the
chapters have been substantially improved and extended, and that new chapters have been
added to highlight important features, such as custom actions and JavaBeans components, and
to explain how to process XML data, and how to integrate your custom components with the
standard JSTL components.

All chapters have also been updated to cover the features and clarifications added in the JSP
1.2 and Servlet 2.3 (which JSP 1.2 is based on) specifications, primarily:

e New XML syntax for JSP pages

e New listener and filter component types

o New tag library validator

e New options for tag library deployment and distribution

e New tag handler interfaces and return values

e New tag library descriptor elements to minimize the need for TagExtraInfo classes

o Improved support for pages stored in encodings other than ISO-8859-1

e Improved rules and a new mechanism for attribute-value conversion

e Improvements to the include action

o Clarifications of the reuse of tag handler instances and their life cycle

e Alignment of the tag library descriptor elements with the elements in other J2EE
descriptors

Preface

Audience

This book is for anyone who is interested in using JSP technology to develop web
applications. In particular, it's written to help those of you who develop JSP-based
applications, specifically:

Page authors

Page authors primarily develop the web interface to an application. This group uses
HTML, stylesheets, and client-side code to develop a rich user interface. Page authors
also want to learn to use JSP elements in web pages to interact with the other server
components, such as servlets, databases, and Enterprise JavaBeans (EJB).

Java programmers

Java programmers are comfortable with the Java programming language and Java
servlets. This group wants to learn how to develop JSP components that page authors
can use in the web pages, such as JSP custom actions and JavaBeans, and how to
combine JSP with other Java server-side technologies, such as servlets and EJB.

The book is structured into three parts, which I describe shortly, to make it easier to find the
material you are most interested in.

What You Need to Know

It's always hard to assume how much you, as the reader, already know. For this book, it was
even harder since the material is intended for two types of audiences: page authors and
programmers.

I've assumed that anyone reading this book has experience with HTML; consequently, I won't
explain the standard HTML elements used in the examples. But even if you're an HTML wiz,
this may be your first exposure to dynamic web content and web applications. A thorough
introduction to the HTTP protocol that drives all web applications as well as to the concepts
and features that are specific to servlet and JSP-based web applications are, therefore,
included. If you want to learn more about HTML, I recommend HTML and XHTML: The
Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly & Associates, Inc.).

If you're a page author, I have assumed that you don't know anything about programming,
although it doesn't hurt if you have played around with client-side scripting languages, such as
VBScript or JavaScript (ECMAScript). Using standard and custom components, you should
rarely, if ever, have to deal with Java code. Except for one chapter, which deals specifically
with how to embed Java code in a JSP page, none of the examples in Part I and Part II
requires Java programming knowledge.

I have assumed that the programmers reading this book are familiar with Java programming,
object-oriented concepts, and Java servlets. If you plan to develop JSP components for page
authors and aren't familiar with Java programming, I recommend that you read a Java
introduction book, such as Learning Java by Patrick Niemeyer and Jonathan Knudsen
(O'Reilly). I include a brief introduction to the Servlet API, but I recommend that you also

Preface

read Java Servlet Programming by Jason Hunter and William Crawford (O'Reilly) or another
book that covers the servlet technology in detail.

The chapters dealing with database access require some knowledge of SQL and databases in
general. I will explain all that you need to know to run the examples, but if you want to
develop database-driven applications, you need to know more about databases than what's
included in this book.

Organization

This book is structured into three parts. The first part of the book describes the fundamentals
of HTTP (the protocol used by all web applications), how servlets and JSP are related, and
how to set up a JSP development environment.

The focus of the second part is on developing JSP-based web applications using standard JSP
elements, JSTL, and custom components. Through the use of practical examples, you will
learn how to handle common tasks, such as validating user input, accessing databases,
authenticating users and protecting web pages, localizing your web site, and more. This
portion of the book is geared more towards page authors but is also of interest to
programmers.

In the third part, you will learn how to develop your own custom actions and JavaBeans, and
how to combine JSP with other Java server-side technologies, such as servlets and Enterprise
JavaBeans (EJB). This portion of the book is intended for the programming community.

All in all, the book consists of 23 chapters and 6 appendixes as follows.

Part |

Chapter 1

Explains how JSP fits into the big picture of web applications and how it compares to
alternative technologies.

Chapter 2

Describes the fundamental HTTP and servlet concepts you need to know to use JSP to
its full potential.

Chapter 3

An overview of the JSP features, as well as the similarities and differences between
JSP pages and servlets. Also introduces the Model-View-Controller design model and
how it applies to JSP.

Chapter 4

Describes where to get the JSP reference implementation (Apache Tomcat) and how
to set it up on your system. Also explains how to install the book examples.

Preface

Part Il
Chapter 5

Examines the JSP basics, such as how to create, deploy, and run a JSP page, as well as
how to use the JSP elements to generate dynamic content.

Chapter 6

Describes what a JavaBeans component is and how it can be used effectively in a JSP
page.

Chapter 7

Describes what a custom tag library is and how to deploy and use one, and introduces
the JSP Standard Tag Library (JSTL) and its powerful Expression Language (EL).

Chapter 8

Explains how an HTML form can be used to send data to a web application and how
to process the data using JavaBeans and JSTL, as well what to be aware of when
generating dynamic output.

Chapter 9

Describes the kinds of errors you may encounter during development of a JSP-based
application, and strategies and JSP features that help you deal with them.

Chapter 10

Explains the JSP features that let you separate different types of processing in different
pages to simplify maintenance and further development. Also describes how sessions
can build up information over a sequence of requests from the same user, and how
information that applies to all users can be shared using the application scope.

Chapter 11

Provides a quick overview of relational databases, JDBC, and SQL basics, and
introduces the JSTL actions for reading, updating, and deleting database data.

Chapter 12
Describes how authentication and access control can be implemented using container-

provided and application-controlled mechanisms, and how to use the information
about who the current user is to personalize the web pages.

Preface

Chapter 13

Explains internationalization and localization, the Java features available to implement
an internationalized application, and describes the set of JSTL actions that support
development of multilingual web sites.

Chapter 14

Explains how JSP can generate XML content as well as process XML input using the
JSTL XML actions.

Chapter 15

Describes the JSP elements that let you embed Java code directly in your JSP pages,
and the type of errors you must be prepared to deal with when you use this feature.

Chapter 16

Covers various areas not discussed in previous chapters, such as using the JSP page
XML syntax, combining JSP with client-side code, reusing JSP fragments by
including them in JSP pages, precompiling JSP pages, and more.

Part Il
Chapter 17

Provides an overview of J2EE and web application architectures using JSP in
combination with other Java technologies.

Chapter 18

Describes in detail how JSP can be combined with servlets, as well as the listener and
filter component types, using the popular Apache Struts framework.

Chapter 19

Provides details about JavaBeans components as they relate to JSP, including
threading and synchronization concerns for session and application scope beans, as
well as how using JavaBeans components can make it easier to migrate to an EJB
architecture.

Chapter 20

Describes the JSP Tag Extension mechanism and how to use it to develop custom tag
libraries, using many of the custom actions used in the previous chapters as examples.

Preface

Chapter 21
Explains the more advanced features that can be leveraged by custom actions, such as
developing cooperating actions, syntax and usage validation, attribute value type
conversions, and more.

Chapter 22

Describes all the integration hooks provided by the JSTL specification and how to
develop custom actions, servlets, listeners, and filters that take advantage of them.

Chapter 23
Provides a brief introduction to JDBC and explains the various strategies available for
efficient use of databases in a web application, such as setting up a connection pool
and making it available to the application components through the servlet context or
JNDI, encapsulating database access code in separate classes or in custom actions, and
more.

Part IV

Appendix A
Contains descriptions of all standard JSP 1.2 elements.

Appendix B

Contains descriptions of all standard JSTL 1.0 elements, programming interfaces, and
support classes.

Appendix C
Contains a description of the JSTL EL syntax and rules.
Appendix D

Contains descriptions of all implicit objects available in a JSP page as defined by the
servlet and JSP APIs, as well as the tag extension mechanism classes and interfaces.

Appendix E

Contains a description of the custom actions, beans, and utility classes used in the
examples.

Appendix F

Contains a description of the standard web application structure and all elements in the
web application deployment descriptor.

Preface

If you're a page author, I recommend that you focus on the chapters in Part I and Part II. You
may want to browse through Part III to get a feel for how things work behind the scene but
don't expect to understand everything if you aren't a Java programmer.

If you're a Java programmer, Part III is where the action is for you. If you're already familiar
with HTTP and servlets, you may want to move quickly through Part I. However, this part
includes information about the web application concept introduced in the Servlet 2.2 API you
may not be familiar with, even if you've worked with servlets for some time. I recommend
you read Part II to learn how JSP works, but you may actually want to start with Part III to see
how the various components in the examples are implemented before you read Part II to see
how they are used.

About the Examples

This book contains a large number of examples that demonstrate useful techniques for input
validation, database access, information caching, application-controlled authentication and
access control, internationalization, XML processing, and more. The examples include both
complete applications, such as an online shopping site, an employee directory, and a
personalized project billboard, as well as numerous smaller examples and page fragments.
The included example tag library contains 10 or so custom actions you can use directly in
your application or as a starting point for your own development. The code for all the
examples and most of the custom actions is contained within the text; you can also download
all code from the O'Reilly web site at http://www.oreilly.com/catalog/jserverpages2/. In
addition, you can see all the examples in action, download the code, ask me questions, find
JSP-related products, and more at http://www.TheJSPBook.com.

All examples have been tested with the official JSP 1.2 reference implementation (Apache
Tomcat 4) on Windows ME and Linux (Red Hat Linux 7.2) using Sun's Java 2 SDK, Standard
Edition (1.3.1_01 and 1.4). If you would like more information on downloading and installing
the Apache Tomcat server for use with the examples, see Chapter 4.

Conventions Used in This Book

Italic is used for:
e Pathnames, filenames, program names, compilers, options, and commands
e New terms where they are defined
o Internet addresses, such as domain names and URLSs

Boldface is used for:

e Particular keys on a computer keyboard
o Names of user interface buttons and menus

Constant width is used for:

e Anything that appears literally in a JSP page or a Java program, including keywords,
data types, constants, methods names, variables, class names, and interface names

e Command lines and options that should be typed verbatim on the screen

e Al JSP and Java code listings

Preface

e HTML documents, tags, and attributes
Constant width italic is used for:

e General placeholders that indicate that an item is replaced by some actual value in
your own program

Constant width bold is used for:

o Text that is typed in code examples by the user

This icon designates a note, which is an important aside to the nearby
text.

This icon designates a warning relating to the nearby text.

How to Contact Us
Please address comments and questions concerning this book to the publisher:
O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/jserverpages2/
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com
Acknowledgments for First Edition

I love to write and have always wanted to write a book someday. After getting a number of
articles about Java servlets and a couple of chapters for a server-side Java book published, my

Preface

confidence was so high that I sent mail to O'Reilly & Associates and asked if they wanted me
to write a book about JSP. Much to my surprise (I guess my confidence was not so high after
all), they said "Yes!" I knew that it would be more work than I could imagine, and it turned
out to be even more than that. But here I am, almost a year later, with 17 chapters and 5
appendixes in a nice stack on my desk, written and rewritten countless times. All that remains
is to give thanks to everyone who helped me fulfill this dream.

First, I'd like to thank my editors, Paula Ferguson and Bob Eckstein. Paula was the one who
accepted my book proposal in the first place and then helped me through my first stumbling
steps of writing the first half of the book. Bob came aboard for the second half and I'm really
grateful to him for thoroughly reading everything and giving me helpful advice.

Thanks also to Rob Romano for doing the illustrations, to Christien Shangraw for helping out
with the coordination, and to all the production people behind the scenes at O'Reilly who
made sure the book got published.

Big thanks also go to the JSP and servlet specification leads, Eduardo Pelegri-Llopart and
Danny Coward, for providing feedback, answering all my questions, and clarifying the vague
and ambiguous areas of the specifications. You helped me more than I could ask for. I hope
my contributions to the specifications repay my debt to some extent.

Thanks also to all of you who helped me improve the book in other ways: Jason Hunter for
letting me borrow his connection pool code and Japanese examples; Craig McClanahan, Larry
Riedel, Steve Jung (Steve dedicates his effort to the memory of his father, Arthur H. Jung,
who passed away March 17, 2000), Sean Rohead, Jerry Croce, Steve Piccolo, and Vikram
David for reviewing the book and giving me many suggestions for how to make it better; all
the Apache Tomcat developers for making a great JSP reference implementation; and the
members of the jsp-interest mailing list for all the ideas about what to cover in this book.

Finally, thanks to everyone who encouraged me and kept my spirits high: Mom, Dad, and my
sister, for their support and for teaching me to do what I believe in; all my old friends in
Sweden, especially Janne Ek and Peter Hellstrm (and his Dad who helped me with the
translation of the German example), Janne Andersson, Roger Bjrevall and Michael Rohdin;
Anne Helgren, my writing teacher who convinced me I could do this; and all the guys in and
around Vesica Pisces (http://www.vesicapisces.com/): Kelly, Brian, Adam, Bill, and James; I
really enjoyed getting away from the writing now and then to hang with you and listen to you

play.
Acknowledgments for Second Edition

Roughly a year and a half have passed since I finished the first edition of this book, and, man,
have things changed! JSP 1.2 has been released, adding new features, big and small, as well
as minor adjustments and clarifications. The big news in the JSP space, though, is the JSP
Standard Tag Library (JSTL). This library includes actions for most common JSP tasks,
making it possible to replace almost all the custom actions I used for the first edition with the
corresponding standard version. To cover all the new stuff, I ended up rewriting almost every
chapter, and even added a few new ones. At the same time, I clarified a number of things that
readers of the first edition have asked me about. It was a lot of fun, and I hope you enjoy the
result.

10

Preface

I would like to thank all readers of the first edition for your feedback, especially Ingo Kegel
for the refined German text he sent me for the 118N example, and Mike Braden, Lucy
Newman, and Masako Onishi for contributing instructions for running the examples with a
number of different database engines, posted on the book's web site.

I really appreciate all the help I got from my review team, especially from Steve Bang who
picked the book to pieces and gave me many helpful suggestions; and Janne Andersson,
Marcus Biervliet, and Pierre Delisle -- thanks for spending your precious time reading and
sending me feedback.

Many thanks also go to my fellow JSTL and JSP specification group members, especially
James Strachan and Shawn Bayern for helping me understand the finer points of XML
processing and XPath, and to Pierre Delisle and Eduardo Pelegri-Llopart for running such a
smooth process and putting up with my stubbornness in certain areas (you know what I mean)
and comments about many picky details.

I would also like to thank Richard Monson-Haefel (author of Enterprise JavaBeans, O'Reilly)
for explaining the meaning of the J2EE resource declaration details, and George Reese
(author of Database Programming with JDBC and Java, O'Reilly) for verifying my
understanding of how JDBC 2.0 connection pooling is supposed to work and for reviewing
Chapter 23.

Thanks also to Bob Eckstein, my editor, for moral support, thoughtful comments, and stacks
of hardcopy with scribbled notes, and to all the production people behind the scenes at
O'Reilly who made sure the book got published.

Finally, thanks to my parents, my sister and her family, and to all my friends in the real world
and in cyberspace, for encouragement and inspiration.

—Hans Bergsten

11

Part I: JSP Application Basics

Part I: JSP Application Basics

This part of the book describes the fundamentals of HTTP (the protocol used
by all web applications), how servlets and JSP are related, and how to set up a
JSP development environment and install the book examples.

Chapter 1
Chapter 2
Chapter 3
Chapter 4

12

Chapter 1. Introducing JavaServer Pages

Chapter 1. Introducing JavaServer Pages

The Java 2 Enterprise Edition (J2EE) has taken the once-chaotic task of building an Internet
presence and transformed it to the point where developers can use Java to efficiently create
multitier, server-side applications. Today, the Java Enterprise APIs have expanded to
encompass a number of areas: RMI and CORBA for remote object handling, JDBC for
database interaction, JNDI for accessing naming and directory services, Enterprise JavaBeans
for creating reusable business components, JMSTM (Java Messaging Service) for message-
oriented middleware, JAXPTM for XML processing, and JTATM (Java Transaction API) for
performing atomic transactions. In addition, J2EE also supports servlets, an extremely popular
Java substitute for CGI scripts. The combination of these technologies allows programmers to
create distributed business solutions for a variety of tasks.

In late 1999, Sun Microsystems added a new element to the collection of Enterprise Java
tools: JavaServer Pages (JSP). JavaServer Pages are built on top of Java servlets and are
designed to increase the efficiency in which programmers, and even nonprogrammers, can
create web content. This book is primarily about JavaServer Pages, covering the latest version
of this technology, JSP 1.2, as well as the related JSP Standard Tag Library (JSTL) Version
1.0. It also covers other J2EE technologies, such as servlets and JDBC, with focus on how to
combine them with JSP in the most efficient way.

1.1 What Is JavaServer Pages?

Put succinctly, JavaServer Pages is a technology for developing web pages that include
dynamic content. Unlike a plain HTML page, which contains static content that always
remains the same, a JSP page can change its content based on any number of variable items,
including the identity of the user, the user's browser type, information provided by the user,
and selections made by the user. As you'll see later in the book, this functionality is key to
web applications such as online shopping and employee directories, as well as for
personalized and internationalized content.

A JSP page contains standard markup language elements, such as HTML tags, just like a
regular web page. However, a JSP page also contains special JSP elements that allow the
server to insert dynamic content in the page. JSP elements can be used for a variety of
purposes, such as retrieving information from a database or registering user preferences.
When a user asks for a JSP page, the server executes the JSP elements, merges the results
with the static parts of the page, and sends the dynamically composed page back to the
browser, as illustrated in Figure 1-1.

Figure 1-1. Generating dynamic content with JSP elements

<himl> o Uspgeis |[ehtals
<body> K | <body>
£ _ Pt ¢jspiuseBean, .. >
Dynamic Content | = <jspigetProperty.../>

| <jsp:getPropexty.../»
- < /hadys LSe35 i/ bhody
</ htmls |« ¢html

JSP defines a number of standard elements that are useful for any web application, such as
accessing JavaBeans components, passing control between pages and sharing information

13

Chapter 1. Introducing JavaServer Pages

between requests, pages, and users. Programmers can also extend the JSP syntax by
implementing application-specific elements that perform tasks such as accessing databases
and Enterprise JavaBeans, sending email, and generating HTML to present
application-specific data. One such set of commonly needed custom elements is defined by
a specification related to the JSP specification: the JSP Standard Tag Library (JSTL)
specification. The combination of standard elements and custom elements allows for
the creation of powerful web applications.

1.2 Why Use JSP?

In the early days of the Web, the Common Gateway Interface (CGI) was the only tool for
developing dynamic web content. However, CGI is not an efficient solution. For every
request that comes in, the web server has to create a new operating-system process, load an
interpreter and a script, execute the script, and then tear it all down again. This is very taxing
for the server and doesn't scale well when the amount of traffic increases.

Numerous CGI alternatives and enhancements, such as FastCGI, mod perl from Apache,
NSAPI from Netscape, ISAPI from Microsoft, and Java servlets from Sun Microsystems,
have been created over the years. While these solutions offer better performance and
scalability, all these technologies suffer from a common problem: they generate web pages by
embedding HTML directly in programming language code. This pushes the creation of
dynamic web pages exclusively into the realm of programmers. JavaServer Pages, however,
changes all that.

1.2.1 Embedding Dynamic Elements in HTML Pages

JSP tackles the problem from the other direction. Instead of embedding HTML in
programming code, JSP lets you embed special active elements into HTML pages. These
elements look similar to HTML elements, but behind the scenes they are actually
componentized Java programs that the server executes when a user requests the page. Here's a
simple JSP page that illustrates this:

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<body bgcolor="white">

<jsp:useBean id="clock" class="java.util.Date" />
<c:choose>
<c:when test="${clock.hours < 12}">
<h1>Good morning!</hl>
</c:when>
<c:when test="${clock.hours < 18}">
<h1>Good day!</h1>
</c:when>
<c:otherwise>
<h1>Good evening!</hl>
</c:otherwise>
</c:choose>
Welcome to our site, open 24 hours a day.
</body>
</html>

This page inserts a different message to the user based on the time of day: "Good morning!" if

the local time is before 12 P.M., "Good day!" if between 12 P.M. and 6 P.M., and "Good
evening!" otherwise. When a user asks for this page, the JSP-enabled web server executes the

14

Chapter 1. Introducing JavaServer Pages

logic represented by the highlighted JSP elements and creates an HTML page that is sent back
to the user's browser. For example, if the current time is 8:53 P.M., the resulting page sent
from the server to the browser looks like this:

<html>
<body bgcolor="white">
<hl>Good evening!</hl1>
Welcome to our site, open 24 hours a day.
</body>
</html>

A screen shot of this result is shown in Figure 1-2.

Figure 1-2. The output of a simple JSP page

' Mozilla (Ruild 10- 20001 22106) =0 =
Fle Erl Wem Smmch Go Bockmaks Tades Hep Debug Q4
\--l}."; o G L3 [5 reovcatoraiEhm e s T femeh || “Thp
- % Home JBcckrmaks i FumADL L Un, o Inclanl Message oMb Tonwebiisl (IO Conrmcton: g Bielounal o) Sl Update

Good evening!

Weltomes to our abe, epen 24 heowrs a day

ol N7 W A7 Direesermet Pines f 8 s o

In addition to the HTML-like JSP elements, a JSP page can also contain Java code embedded
in so-called scripting elements. This feature has been part of the JSP specification from the
very first version, and it used to be convenient for simple conditional logic. With the
introduction of the new JSP Standard Tag Library (JSTL), however, Java code in a page is
rarely needed. In addition, embedding too much code in a web page is no better than using
HTML elements in a server-side program, and often leads to a web application that is hard to
maintain and debug. The examples in this book rarely use scripting elements, but they are
described in detail in Chapter 15.

1.2.2 Compilation

Another benefit that is important to mention is that a JSP page is always compiled before it's
processed by the server. Remember that older technologies such as CGI/Perl require the
server to load an interpreter and the target script each time the page is requested. JSP gets
around this problem by compiling each JSP page into executable code the first time it's
requested (or on demand), and invoking the resulting code directly on all subsequent requests.
When coupled with a persistent Java virtual machine on a JSP-enabled web server, this allows
the server to handle JSP pages much faster.

1.2.3 Using the Right Person for Each Task

As I alluded to earlier, JSP allows you to separate the markup language code, such as HTML,
from the programming language code used to process user input, access a databases and
perform other application tasks. One way this separation takes place is through the use of the
JSP standard and custom elements; these elements are implemented with programming code
and used the same way as page markup elements in regular web pages.

15

Chapter 1. Introducing JavaServer Pages

Another way to separate is to combine JSP with other J2EE technologies. For example, Java
servlets can handle input processing, Enterprise JavaBeans (EJB) can take care of the
application logic, and JSP pages can provide the user interface.

This separation means that with JSP, a typical business can divide its efforts among two
groups that excel in their own areas of expertise: a Java web development team with
programmers who implement the application logic as servlets, EJBs and custom JSP
elements, and page authors who craft the specifics of the interface and use the powerful
custom elements without having to do any programming. We'll talk more about this benefit as
we move through the book, although I should reiterate that the first half of the book is devoted
more to those without programming experience, while the second half is for programmers
who wish to combine JSP with other technologies and create their own JSP elements.

1.2.4 Integration with Enterprise Java APls

Finally, because JavaServer Pages are built on top of the Java Servlets API, JSP has access to
all the powerful Enterprise Java APIs, including:

e« JDBC

e Remote Method Invocation (RMI) and OMG CORBA support
o JNDI (Java Naming and Directory Interface)

o Enterprise JavaBeans (EJB)

e JMS (Java Message Service)

e JTA (Java Transaction API)

e JAXP (Java API for XML Processing)

e JavaMail

This means that you can easily integrate JavaServer Pages with your existing Java Enterprise
solutions.

1.2.5 Other Solutions

At this point, let's digress and look at some other solutions for dynamic web content. Some of
these solutions are similar to JSP, while others are descendants of older technologies. Many
don't have the unique combination of features and portability offered by JavaServer Pages.

1.2.5.1 Active Server Pages (ASP)

Microsoft's Active Server Pages (ASP) is a popular technology for developing dynamic web
sites. Just like JSP, ASP lets a page author include logic, such as VBScript and JScript code,
in regular web pages to generate the dynamic parts. For complex code, COM (ActiveX)
components written in a programming language such as C++ can be invoked by the scripting
code. The standard distribution includes components for database access and more, and other
components are available from third parties. When an ASP page is requested, the code in the
page is executed by the server. The result is inserted into the page, and the combination of the
static and dynamic content is sent to the browser.

ASP.NET, the latest version of ASP, adds a number of new features. As an alternative to

scripting, dynamic content can be generated by HTML/XML-like elements similar to JSP
action elements. For improved performance, ASP.NET pages are compiled as opposed to

16

Chapter 1. Introducing JavaServer Pages

interpreted, and Common Language Runtime (CLR) languages, such as C#, JScript. NET, and
Visual Basic.NET, are used instead of the scripting languages supported in previous ASP-
versions.

The classic ASP version is bundled with Microsoft's Internet Information Server (IIS). Due to
its reliance on native COM code as its component model, it's primarily a solution for the
Windows platform. Limited support for other platforms, such as the Apache web server on
Unix, is available through third-party products such as Sun Chili!Soft ASP (Sun
Microsystems, Inc.) and InstantASP (Halcyon Software). ASP.NET is a part of the complete
NET platform, with the potential for better support on non-Windows platforms. You can read
more about ASP and ASP.NET on Microsoft's web site, http://www.microsoft.com.

1.2.5.2 PHP

PHP' is an open source web scripting language. Like JSP and ASP, PHP allows a page author
to include scripting code in regular web pages to generate dynamic content. PHP has a C-like
syntax with some features borrowed from Perl, C++, and Java. Complex code can be
encapsulated in both functions and classes. A large number of predefined functions are
available as part of PHP, such as accessing databases, LDAP directories, and mail servers,
creating PDF documents and images, and encrypting and decrypting data. PHP 4, the current
version, compiles a page when it's requested, executes it and merges the result of executing
the scripts with the static text in the page, before it's returned to the browser.

PHP is supported on a wide range of platforms, including all major web servers, on operating
systems like Windows, Mac, and most Unix flavors, and with interfaces to a large number of
database engines. More information about PHP is available at http://www.php.net.

1.2.5.3 ColdFusion

Macromedia's ColdFusion product is another popular alternative for generating dynamic web
content. The dynamic parts of a page are generated by inserting HTML/XML-like elements,
known as the ColdFusion Markup Language (CFML), into web pages. CFML includes a large
set of elements for tasks such as accessing databases, files, mail servers, and other web
servers, as well as conditional processing elements such as loops. The latest version of
ColdFusion also includes elements for communication with Java servlets and Enterprise
JavaBeans. Custom elements can be developed in C++ or Java to encapsulate application-
specific functions, and CFML extensions are available from third parties. ColdFusion didn't
initially support scripting languages, but since ColdFusion 4.5, JavaScript-like code can be
embedded in the web pages in addition to the CFML tags.

The ColdFusion 5, Enterprise Edition, is supported on Windows, Solaris, HP/UX and Linux,
for all major web servers and databases. For more information, visit Macromedia's web site at
http://www.macromedia.com/.

1.2.5.4 Java servlet template engines

A Java servlet template engine is another technology for separating presentation from
processing. When servlets became popular, it didn't take long before developers realized how

" The precursor to PHP was a tool called Personal Home Page. Today PHP is not an acronym for anything; it's
simply the name for this product.

17

Chapter 1. Introducing JavaServer Pages

hard it was to maintain the presentation part when the HTML code was embedded directly in
the servlet's Java code. As a result, a number of so-called template engines have been
developed as open source products to help get HTML out of the servlets.

Template engines are intended to be used with pure code components (servlets) and to use
web pages with scripting code only for the presentation part. Requests are sent to a servlet that
processes the request, creates objects that represent the result, and calls on a web page
template to generate the HTML to be sent to the browser. The template contains scripting
code similar to the alternatives described earlier. The scripting languages used by these
engines are less powerful, however, since scripting is intended only for reading data objects
and generating HTML code to display their values. All the other products and technologies
support general-purpose languages, which can (for better or for worse) be used to include
business logic in the pages.

Two popular template engines are Velocity (http://jakarta.apache.org/velocity/) and
FreeMarker (http://freemarker.sourceforge.net/).

1.2.6 The JSP Advantage

JSP 1.2 combines the most important features found in the alternatives:

e JSP supports both scripting- and element-based dynamic content and allows
programmers to develop custom tag libraries to satisfy application-specific needs.

o JSP pages are compiled for efficient server processing.

e JSP pages can be used in combination with servlets that handle the business logic, the
model supported by Java servlet template engines.

In addition, JSP has a couple of unique advantages that make it stand out from the crowd:

e JSP is a specification, not a product. This means vendors can compete with different
implementations, leading to better performance and quality. It also leads to a less
obvious advantage, namely that when so many companies have invested time and
money in the technology, chances are it will be around for a long time, with
reasonable assurances that new versions will be backward-compatible; with a
proprietary technology, this is not always a given.

e JSP is an integral part of J2EE, a complete platform for enterprise class applications.
This means that JSP can play a part in the simplest applications to the most complex
and demanding.

1.3 What You Need to Get Started

Before we begin, let's quickly run through what you need to run the examples and develop
your own applications. You really only need three things:

e A PC or workstation, with a connection to the Internet so you can download the
software you need

e A Java 2 compatible-Java Software Development Kit (Java 2 SDK)

e A JSP 1.2-enabled web server, such as Apache Tomcat from the Jakarta Project

18

Chapter 1. Introducing JavaServer Pages

The Apache Tomcat server is the reference implementation for JSP 1.2. All the examples in
the book were tested on Tomcat. In Chapter 4, I'll show you how to download, install, and
configure the Tomcat server as well as the examples described in this book.

In addition, there are a variety of other tools and servers that support JSP, from both open
source projects and commercial companies. Close to 30 different server products support JSP
to date, and roughly 10 IDEs and authoring tools with varying degrees of JSP support are
listed on Sun's JSP web site (http://java.sun.com/products/jsp). You may want to evaluate
some of these products when you're ready to start developing your application, but all you
really need to work with the examples in this book is a regular text editor, such as Notepad,
vi, or Emacs, and of course the Tomcat server.

So let's get going and take a closer look at what JSP has to offer. You'll need a solid ground to

stand on though, so in the next chapter we will start with the foundations upon which JSP is
built: HTTP and Java servlets.

19

Chapter 2. HTTP and Servlet Basics

Chapter 2. HTTP and Servlet Basics

Let's start off this chapter by defining the term web application. We've all seen regular
client-side applications, but what exactly is a web application? Loosely, it can be defined as
an application running on a server a user accesses through a thin, general-purpose client.
Today, the most common client is a web browser on a PC or workstation, but other kinds of
clients are rapidly joining the party, such as wireless PDAs, cell phones, and other specialized
devices.

The lofty goal here is to access all the information and services you need from any type of
device that happens to be in front of you. This means that the same simple client program
must be able to talk to many different server applications, and the applications must be able to
work with many different types of clients. To satisfy this need, the protocol of how a client
and a server talk to each other must be defined in detail. That's exactly what the HyperText
Transport Protocol (HTTP) is for.

The communication model defined by HTTP forms the foundation for all web application
design. A basic understanding of HTTP is key to developing applications that fit within the
constraints of the protocol, no matter which server-side technology you use. In this chapter,
we look at the most important details of HTTP you need to be aware of as a web application
developer.

One other item: this book is about using JSP as the server-side technology, so that's what we'll
focus on. As you saw in Chapter 1, JSP is based on the Java servlet technology. Both
technologies share a lot of terminology and concepts, so knowing a bit about servlets will help
you even when you develop pure JSP applications. To really understand and use the full
power of JSP, you need to know a fair bit about servlets. Hence, we'll take a look at servlet
fundamentals in the last section of this chapter.

2.1 The HTTP Request/Response Model

HTTP and all extended protocols based on HTTP are based on a very simple communications
model. Here's how it works: a client, typically a web browser, sends a request for a resource
to a server, and the server sends back a response corresponding to the resource (or a response
with an error message if it can't deliver the resource for some reason). A resource can be a
number of things, such as a simple HTML file returned verbatim to the browser or a program
that generates the response dynamically. This request/response model is illustrated in
Figure 2-1.

20

Chapter 2. HTTP and Servlet Basics

Figure 2-1. HTTP request/response with two resources

FESQUIES

<html»
chodys
ient </bodys
o html>

request

_-9-%:-
1

PROGRAM

This simple model implies three important facts you need to be aware of:

e HTTP is a stateless protocol. This means that the server doesn't keep any information
about the client after it sends its response, and therefore can't recognize that multiple
requests from the same client may be related.

e Web applications can't easily provide the kind of immediate feedback typically found
in standalone GUI applications such as word processors or traditional client/server
applications. Every interaction between the client and the server requires a
request/response exchange. Performing a request/response exchange when a user
selects an item in a list box or fills out a form element is usually too taxing on the
bandwidth available to most Internet users.

e There's nothing in the protocol that tells the server how a request is made;
consequently, the server can't distinguish between various methods of triggering the
request on the client. For example, the HTTP protocol doesn't allow a web server to
differentiate between an explicit request caused by clicking a link or submitting a form
and an implicit request caused by resizing the browser window or using the browser's
Back button. In addition, HTTP doesn't contain any means for the server to invoke
client specific functions, such as going back in the browser history list or sending the
response to a certain frame. Also, the server can't detect when the user closes the
browser.

Over the years, people have developed various tricks to overcome the first problem; HTTP's
stateless nature. We'll look at them in Chapter 10. The other two problems -- no immediate
feedback and no details about how the request is made -- are harder to deal with, but some
amount of interactivity can be achieved by generating a response that includes client-side
code (code executed by the browser), such as JavaScript or a Java applet. This approach is
discussed briefly in Chapter 16.

2.1.1 Requests in Detail
Let's take a closer look at requests. A user sends a request to the server by clicking a link on a
web page, submitting a form, or typing in a web page address in the browser's address field.

To send a request, the browser needs to know which server to talk to and which resource to
ask for. This information is specified by an HTTP Uniform Resource Locator (URL).

http://www.gefionsoftware.com/index.html

21

Chapter 2. HTTP and Servlet Basics

The first part of the URL shown here specifies that the HTTP protocol makes the request.
This is followed by the name of the server, in this case www.gefionsoftware.com. The web
server waits for requests to come in on a specific TCP/IP port. Port number 80 is the standard
port for HTTP requests. If the web server uses another port, the URL must specify the port
number in addition to the server name. For example:

http://www.gefionsoftware.com:8080/index.html

This request is sent to a server that uses port 8080 instead of 80. The last part of the URL,
/index.html, identifies the resource that the client is requesting.

A URL is actually a specialization of a Uniform Resource Identifier (URI, defined in the
RFC-2396' specification). A URL identifies a resource partly by its location, for instance the
server that contains the resource. Another type of URI is a Uniform Resource Name (URN),
which is a globally unique identifier that is valid no matter where the resource is located.
HTTP deals only with the URL variety. The terms URI and URL are often used
interchangeable, and unfortunately, they have slightly different definitions in different
specifications. I'm trying to use the terms as defined by the HTTP/1.1 specification
(RFC-2616), which is pretty close to how they are also used in the servlet and JSP
specifications. Hence, I use the term URL only when the URI must start with http (or
https, for HTTP over an encrypted connection) followed by a server name and possibly a
port number, as in the previous examples. I use URI as a generic term for any string that
identifies a resource, where the location can be deduced from the context and isn't necessarily
part of the URI. For example, when the request has been delivered to the server, the location
is a given, and only the resource identifier is important.

The browser uses the URL information to create the request message it sends to the specified
server using the specified protocol. An HTTP request message consists of three things: a
request line, request headers, and possibly a request body.

The request line starts with the request method name, followed by a resource identifier and
the protocol version used by the browser:

GET /index.html HTTP/1.0

The most commonly used request method is named GET. As the name implies, a GET request
is used to retrieve a resource from the server. It's the default request method, so if you type a
URL in the browser's address field, or click on a link, the request will be sent as a GET request
to the server.

The request headers provide additional information the server may use to process the request.
The message body is included only in some types of requests, like the POST request discussed

later.

Here's an example of a valid HTTP request message:

' Available at http://www.ietf.org/rfc/rfc2396.txt.

22

Chapter 2. HTTP and Servlet Basics

GET /index.html HTTP/1.0

Host: www.gefionsoftware.com

User-Agent : Mozilla/4.5 [en] (WinNT; 1I)

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-Language : en

Accept-Charset : iso-8859-1,*,utf-8

The request line specifies the GET method and asks for the resource named /index.html to
be returned using the HTTP/1.0 protocol version. The various headers provide additional
information.

The Host header tells the server the hostname used in the URL. A server may have multiple
names, so this information is used to distinguish between multiple virtual web servers sharing
the same web server process.

The User-Agent header contains information about the type of browser making the request.
The server can use this to send different types of responses to different types of browsers. For
instance, if the server knows whether Internet Explorer or Netscape Navigator is used, it can
send a response that takes advantage of each browser's unique features. It can also tell if a
client other than an HTML browser is used, such as a Wireless Markup Language (WML)
browser on a cell phone or a PDA device, and generate an appropriate response.

The Accept headers provide information about the languages and file formats the browser
accepts. These headers can be used to adjust the response to the capabilities of the browser
and the user's preferences, such as use a supported image format and the preferred language.
These are just a few of the headers that can be included in a request message. The HTTP
specification, available at http://www.w3c.org/, describes all of them.

The resource identifier (URI) doesn't necessarily correspond to a static file on the server. It
can identify an executable program, a record in a database, or pretty much anything the web
server knows about. That's why the generic term resource is used. In fact, there's no way to
tell if the /index.html URI corresponds to a file or something else; it's just a name that
means something to the server. The web server is configured to map these unique names to
the real resources.

2.1.2 Responses in Detail

When the web server receives the request, it looks at the URI and decides, based on
configuration information, how to handle it. It may handle it internally by simply reading an
HTML file from the file system, or it can forward the request to some component that is
responsible for the resource corresponding to the URI. This can be a program that uses
database information, for instance, to dynamically generate an appropriate response. To the
browser it makes no difference how the request is handled; all it cares about is getting a
response.

The response message looks similar to the request message. It consists of three things: a status
line, response headers and an optional response body. Here's an example:

23

Chapter 2. HTTP and Servlet Basics

HTTP/1.0 200 OK

Last-Modified: Mon, 20 Dec 2001 23:26:42 GMT
Date: Tue, 11 Jan 2002 20:52:40 GMT

Status: 200

Content-Type: text/html

Servlet-Engine: Tomcat Web Server/4.0.1
Content-Length: 59

<html>
<body>
<hl>Hello World!</hl>
</body>
</html>

The status line starts with the name of the protocol, followed by a status code and a short
description of the status code. Here the status code is 200, meaning the request was executed
successfully. The response message has headers just like the request message. In this
example, the Last-Modified header gives the date and time for when the resource was last
modified. The browser can use this information as a timestamp in a local cache; the next time
the user asks for this resource, it can ask the server to send it only if it's been updated since
the last time it was requested. The Content-Type header tells the browser what type of
response data the body contains, and the Content-Length header how large it is. The other
headers are self-explanatory. A blank line separates the headers from the message body. Here
the body is a simple HTML page:

<html>
<body>
<hl>Hello World!</hl>
</body>
</html>

Of course, the body can contain a more complex HTML page or any other type of content.
For example, the request may return an HTML page with elements. When the browser
reads the first response and finds the elements, it sends a new request for the resource
identified by each element, often in parallel. The server returns one response for each image
request, with a Content-Type header telling what type of image it is (for instance
image/gif) and the body containing the bytes that makes up the image. The browser then
combines all responses to render the complete page. This interaction is illustrated in
Figure 2-2.

24

Chapter 2. HTTP and Servlet Basics

Figure 2-2. Interaction between a web client and a server

Server
e ||:ET findex.html KTTP/1.0 |
||.-.n.::r ; :@
% L
HTTR#/1.0 200 0K
-

¢html»
<hi1:Helle World!</hiz
<img sree/tomcat.gifs
</tml

CET /tomcat.gif HTTP/ 1.0

HTITP/1 .0 200 0K
Content-Type: image/gif

1100112100110001010010100
00110100010111101010100

2.1.3 Request Parameters

Besides the URI and headers, a request message can contain additional information in the
form of parameters. If the URI identifies a server-side program for displaying weather
information, for example, request parameters can provide information about which city the
user wants to see a forecast for. In an e-commerce application, the URI may identify a
program that processes orders, with the user's customer number and the list of items to be
purchased transferred as parameters.

Parameters can be sent in one of two ways: tacked on to the URI in the form of a query string,
or sent as part of the request message body. This is an example of a URL with a query string:

http://www.weather.com/forecast?city=Hermosa+Beach&state=CA

The query string starts with a question mark (?) and consists of name/value pairs separated by
ampersands (&). These names and values must be URL-encoded, meaning that special
characters, such as whitespace, question marks, ampersands, and all other nonalphanumeric
characters are encoded so that they don't get confused with characters used to separate
name/value pairs and other parts of the URI. In this example, the space between Hermosa
and Beach is encoded as a plus sign. Other special characters are encoded as their
corresponding hexadecimal ASCII value: for instance, a question mark is encoded as %3F.
When parameters are sent as part of the request body, they follow the same syntax; URL
encoded name/value pairs separated by ampersands.

2.1.4 Request Methods

As described earlier, GET is the most commonly used request method, intended to retrieve a
resource without causing anything else to happen on the server. The POST method is almost
as common as GET; it requests some kind of processing on the server, for instance, updating a
database or processing a purchase order.

25

Chapter 2. HTTP and Servlet Basics

The way parameters are transferred is one of the most obvious differences between the GET
and POST request methods. A GET request always uses a query string to send parameter
values, while a POST request always sends them as part of the body (additionally, it can send
some parameters as a query string, just to make life interesting). If you insert a link in an
HTML page using an <a> element, clicking on the link results in a GET request being sent to
the server. Since the GET request uses a query string to pass parameters, you can include
hardcoded parameter values in the link URI:

Hermosa Beach weather forecast

When you use a form to send user input to the server, you can specify whether to use the GET
or POST method with the method attribute, as shown here:

<form action="/forecast" method="POST">
City: <input name="city" type="text">
State: <input name="state" type="text">
<p>
<input type="SUBMIT">

</form>

If the user enters "Hermosa Beach" and "CA" in the form fields and clicks on the Submit
button, the browser sends a request message like this to the server:

POST /forecast HTTP/1.0

Host: www.gefionsoftware.com

User-Agent: Mozilla/4.5 [en] (WinNT; I)

Accept: image/gif, image/jpeg, image/pjpeg, image/png, */*
Accept-language: en

Accept-charset: iso-8859-1,*,utf-8

city=Hermosa+Beaché&state=CA

Due to the differences in how parameters are sent by GET and POST requests, as well as the
differences in their intended purpose, browsers handle the requests in different ways. A GET
request, parameters and all, can easily be saved as a bookmark, hardcoded as a link, and the
response cached by the browser. Also, the browser knows that no damage is done if it needs
to send a GET request again automatically, for instance if the user clicks the Reload button.

A POST request, on the other hand, can't be bookmarked as easily; the browser would have to
save both the URI and the request message body. Since a POST request is intended to perform
some possibly irreversible action on the server, the browser must also ask the user if it's okay
to send the request again. You have probably seen this type of confirmation dialog, shown in
Figure 2-3, numerous times with your browser.

Figure 2-3. Repost confirmation dialog

26

Chapter 2. HTTP and Servlet Basics

Besides the GET and POST methods, HTTP specifies the following methods:

OPTIONS

The OPTIONS method is used to find out what options (e.g., methods) a server or a
resource offers.

HEAD

The HEAD method is used to get a response with all headers generated by a GET
request but without the body. It can make sure a link is valid or to see when a resource
was last modified.

PUT

The PUT method is used to store the message body content on the server as a resource
identified by the URI.

DELETE
The DELETE method is used to delete the resource identified by the URI.

TRACE
The TRACE method is used for testing the communication between the client and the
server. The server sends back the request message, exactly as it received it, as the

body of the response.

These methods aren't normally used in a web application.

2.2 Servlets

The JSP specification is based on the Java servlet specification. In fact, JSP pages are often
combined with servlets in the same application. In this section, we first take a brief look at
what a servlet is, and then discuss the concepts shared by servlets and JSP pages. In Chapter
3, we'll take a closer look at how JSP pages are actually turned into servlets automatically.

If you're already familiar with servlets, this is old news. You can safely skip the rest of this
chapter.

2.2.1 Advantages over Other Server-Side Technologies

In simple terms, a servlet is a piece of code that adds new functionality to a server (typically a
web server), just like CGI and proprietary server extensions such as NSAPI and ISAPI. But
compared to other technologies, servlets have a number of advantages:

Platform and vendor independence

27

Chapter 2. HTTP and Servlet Basics

All the major web servers and application servers support servlets, so a servlet-based
solution doesn't tie you to one specific vendor. And, since servlets are written in the
Java programming language, they can be used on any operating system with a Java
runtime environment.

Integration

Servlets are developed in Java and can therefore take advantage of all other Java
technologies, such as JDBC for database access, JNDI for directory access, RMI for
remote resource access, etc. Starting with Version 2.2, the servlet specification is part
of the Java 2 Enterprise Edition (J2EE), making servlets an important ingredient of
any large-scale enterprise application, with formalized relationships to other server-
side technologies such as Enterprise JavaBeans.

Efficiency

Servlets execute in a process that is running until the servlet-based application is shut
down. Each servlet request is executed as a separate thread in this permanent process.
This is far more efficient that the CGI model, where a new process is created for each
request. First of all (and most obvious), a servlet doesn't have the overhead of creating
the process and loading the CGI script and possibly its interpreter. But another
timesaver is that servlets can also access resources that remain loaded in the process
memory between requests, such as database connections and persistent state.

Scalability

By virtue of being written in Java and the broad support for servlets, a servlet-based
application is extremely scalable. You can develop and test the application on a
Windows PC using the standalone servlet reference implementation, and deploy it on
anything from a more powerful server running Linux and Apache to a cluster of high-
end servers with an application server that supports loadbalancing and failover.

Robustness and security

Java is a strongly typed programming language. This means that you catch a lot of
mistakes in the compilation phase that you would only catch during runtime if you
used a script language such as Perl. Java's error handling is also much more robust
than C/C++, where an error such as division by zero typically brings down the whole
server.

In addition, servlets use specialized interfaces to server resources that aren't vulnerable
to the traditional security attacks. For instance, a CGI Perl script typically uses shell
command strings composed of data received from the client to ask the server to do
things such as send email. People with nothing better to do love to find ways to send
data that will cause the server to crash, remove all files on the hard disk, or plant a
virus or a backdoor when the server executes the command. While a CGI script
programmer must be very careful to screen all input to avoid these threats, such

28

Chapter 2. HTTP and Servlet Basics

problems are almost nonexistent with a servlet because it doesn't communicate with
the server in the same insecure way.”

As you will see in Chapter 3, JSP inherits all these advantages because it's based on the
servlet specification.

2.2.2 Servlet Containers

A servlet container is the connection between a web server and the servlets. It provides the
runtime environment for all the servlets on the server as defined by the servlet specification
and is responsible for loading and invoking those servlets when the time is right. The
container typically loads a servlet class when it receives the first request for the servlet, gives
it a chance to initialize itself, and then asks it to process the request. Subsequent requests use
the same, initialized servlet until the server is shut down. The container then gives the servlet
a chance to release resources and save its state (for instance, information accumulated during
its lifetime).

There are many different types of servlet containers. Some containers are called add-ons, or
plug-ins, and are used to add servlet support to web servers without native servlet support
(such as Apache and IIS). They can run in the same operating-system process as the web
server or in a separate process. Other containers are standalone servers. A standalone server
includes web server functionality to provide full support for HTTP in addition to the servlet
runtime environment. Containers can also be embedded in other servers, such as a climate-
control system, to offer a web-based interface to the system. A container bundled as part of an
application server can distribute the execution of servlets over multiple hosts. The server can
balance the load evenly over all containers, and some servers can even provide fail-over
capabilities in case a host crashes.

No matter what type it is, the servlet container is responsible for mapping an incoming request
to a servlet registered to handle the resource identified by the URI and passing the request
message to that servlet. After the request is processed, it's the container's responsibility to
convert the response created by the servlet into an HTTP response message and send it back
to the client. This is illustrated in Figure 2-4.

2 However, servlet-based web sites are vulnerable to so-called cross site scripting attacks (see

http://www.cert.org/advisories/CA-2000-02.html) the same way all dynamic web sites are, no matter which
technology is used.

29

Chapter 2. HTTP and Servlet Basics

Figure 2-4. Request dispatching

fealesfrapart!month=Jan
’
e §
: Servlet Container |

& /sales/repart'menth=Jlan

Context Path: fcat

Context Path: T

i et Comtent Path: fsales Servlet Context
E & /salesireportimanth=Jan
' Mapping: /forecast™ :

lapping: /hacklog™

= e Mapping S report’™
Serviet

2.2.3 Servlet Contexts and Web Applications

A Java web application is typically made up by a combination of several different types of
resources: JSP pages, servlets, applets, static HTML pages, custom tag libraries and other
Java class files. Containers compliant with the Servlet 2.2 specification (or later), support a
standard, portable way to package all these resources, along with a web application
deployment descriptor containing information about how all the resources fit together. The
deployment descriptor and all the other web application files are arranged in a well-defined
hierarchy within an archive file, called a web archive (WAR). All compliant containers
provide tools for installing a WAR file, or a special directory where a WAR file is
automatically picked up (such as the webapps directory in Tomcat 4). Most containers also
support web applications deployed directly in a filesystem using the same file structure as is
defined for the WAR file, which can be convenient during development.

Within the container, each web application is represented by a serviet context. The servlet
context is associated with a unique URI path prefix called the context path, as shown in
Figure 2-4. For instance, your human resources application can be associated with the context
path /hr and your sales tracking system with the context path /sales. This allows one servlet
container to distinguish between the different applications it serves and dispatch requests like
/sales/report?month=Jan to the sales tracking application and /hr/emplist to the human-
resources application.

The remaining URI path is then used within the selected context to decide how to process the
request by comparing it to path-mapping rules defined by the application's deployment
descriptor. Rules can be defined to send all requests starting with /report to one servlet and
requests starting with /forecast to another. Another type of mapping rule can say that one
servlet handles all requests with paths ending with a specific file extension, such as .jsp. This
is how JSP page requests are handled. Figure 2-4 shows how the different parts of the URI
paths are used to direct the request processing to the right resource through the container and
context.

Each context is self-contained and doesn't know anything about other applications running in
the same container. References between the servlets and JSP pages in the application are

30

Chapter 2. HTTP and Servlet Basics

commonly relative to the context path, and therefore are referred to as context-relative paths.
By using context-relative paths within the application, a web application can be deployed
using any context path.

Finally, a context can hold objects shared by all components of the application,” such as
database connections and other shared resources needed by multiple servlets and JSP pages.

The web application structure, the deployment file format, and the ability to share objects
among components in an application are three important parts of the servlet specification that
also apply to JSP. We will look at all these areas in much greater detail later in this book,
starting with the basics in Chapter 5 and adding more advanced features as needed in the
following chapters.

? Special considerations must be taken for applications distributed over multiple servers. Chapter 17 describes
this in more detail.

31

Chapter 3. JSP Overview

Chapter 3. JSP Overview

JSP is the latest Java technology for web application development and is based on the servlet
technology introduced in the previous chapter. While servlets are great in many ways, they
are generally reserved for programmers. In this chapter, we look at the problems that JSP
technology solves, the anatomy of a JSP page, the relationship between servlets and JSP, and
how the server processes a JSP page.

In any web application, a program on the server processes requests and generates responses.
In a simple one-page application, such as an online bulletin board, you don't need to be overly
concerned about the design of this piece of code; all logic can be lumped together in a single
program. However, when the application grows into something bigger (spanning multiple
pages, using external resources such as databases, with more options and support for more
types of clients), it's a different story. The way your site is designed is critical to how well it
can be adapted to new requirements and continue to evolve. The good news is that JSP
technology can be used as an important part in all kinds of web applications, from the
simplest to the most complex. Therefore, this chapter also introduces the primary concepts in
the design model recommended for web applications and the different roles played by JSP
and other Java technologies in this model.

3.1 The Problem with Servlets

In many Java servlet-based applications, processing the request and generating the response
are both handled by a single servlet class. Example 3-1 shows how a servlet class often looks.

Example 3-1. A typical servlet class

public class OrderServlet extends HttpServlet {
public void doGet ((HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException ({

response.setContentType ("text/html") ;
PrintWriter out = response.getWriter();

if (isOrderInfoValid(request)) {

saveOrderInfo (request) ;

out.println ("<html>");

out.println(" <head>");

out.println (" <title>Order Confirmation</title>");
out.println(" </head>");
(

out.println (" <body>");

out.println (" <hl1>Order Confirmation</h1>");
renderOrderInfo (request) ;

out.println(" </body>");

out.println ("</html>");

If you're not a programmer, don't worry about all the details in this code. The point is that the
servlet contains request processing and business logic (implemented by methods such as
isOrderInfovalid() and saveOrderInfo()), and also generates the response
HTML code, embedded directly in the servlet code using println() calls. A more
structured servlet application isolates different pieces of the processing in various reusable

32

Chapter 3. JSP Overview

utility classes and may also use a separate class library for generating the actual HTML
elements in the response. Even so, the pure servlet-based approach still has a few problems:

e Thorough Java programming knowledge is needed to develop and maintain all aspects
of the application, since the processing code and the HTML elements are lumped
together.

e Changing the look and feel of the application, or adding support for a new type of
client (such as a WML client), requires the servlet code to be updated and recompiled.

e It's hard to take advantage of web-page development tools when designing the
application interface. If such tools are used to develop the web page layout, the
generated HTML must then be manually embedded into the servlet code, a process
which is time consuming, error prone, and extremely boring.

Adding JSP to the puzzle lets you solve these problems by separating the request processing
and business logic code from the presentation, as illustrated in Figure 3-1. Instead of
embedding HTML in the code, you place all static HTML in a JSP page, just as in a regular
web page, and add a few JSP elements to generate the dynamic parts of the page. The request
processing can remain the domain of the servlet, and the business logic can be handled by
JavaBeans and EJB components.

Figure 3-1. Separation of request processing, business logic, and presentation

_ Servlet
public class OrderServlet...{
public void deGet(...)

L :Hb-ean,is{rrdewalid{,,.]]I{
Fees T VLRSI 1
:_-----I.- bean.savelrder(...);
forward("conf.jsp");

}

Pure Serviet ;U

public class OrderServliet...{ 5P
public void doGet{...){ i R
I'FI:IEUrdE"I"ila].ldl:IE"q:'}{ bt {hﬂdy)

saveOzder(req); cc:forEach items="%{order} >

out.println(®chtmls");] p.resen.‘arji.n
aut.println=<bodys"); g
o <« fbody>
private void isOrdervalid(...){ | </Itml>
) T _ JavaBeans
private void savelrder(...)H I
} isOrdlerValid{)

} I
L.....h.
busness fogic savelrder()

As I mentioned before, separating the request processing and business logic from presentation
makes it possible to divide the development tasks among people with different skills. Java
programmers implement the request processing and business logic pieces, web page authors
implement the user interface, and both groups can use best-of-breed development tools for the
task at hand. The result is a much more productive development process. It also makes it

33

Chapter 3. JSP Overview

possible to change different aspects of the application independently, such as changing the
business rules without touching the user interface.

This model has clear benefits even for a web-page author without programming skills,
working alone. A page author can develop web applications with many dynamic features,
using the JSP standard actions and the JSTL libraries, as well as Java components provided by
open source projects and commercial companies.

3.2 The Anatomy of a JSP Page

A JSP page is simply a regular web page with JSP elements for generating the parts that differ
for each request, as shown in Figure 3-2.

Figure 3-2. Template text and JSP elements

cH@ pape language="java" contentType="text/html" ‘Ezl— J5F elertrent

chtmls
chody bgcolor="white"» Femproe
<jspiuseBean
id="userInfo"
class="com.ora. jsp.beans.userinfo. User InfoBean”» |- J/5° dement
¢jsp:setProperty name="userInfo” property="+*"/»
%</ jsp:usebean:

The following information was saved:
2ils — template text
¢lizUser Name:

cjspigetProperty names"userInfo" T —
property="userName" /> | '
¢lizEmail Address: :I—!L'rnp.lurerex.r
<jsp:getProperty names"userInfo" -
property="emailAddr" /> 30 eement
efuly o
</body> — template feat
¢fhitml>

Everything in the page that isn't a JSP element is called femplate text. Template text can be
any text: HTML, WML, XML, or even plain text. Since HTML is by far the most common
web-page language in use today, most of the descriptions and examples in this book use
HTML, but keep in mind that JSP has no dependency on HTML,; it can be used with any
markup language. Template text is always passed straight through to the browser.

When a JSP page request is processed, the template text and dynamic content generated by
the JSP elements are merged, and the result is sent as the response to the browser.

3.3 JSP Processing

Just as a web server needs a servlet container to provide an interface to servlets, the server
needs a JSP container to process JSP pages. The JSP container is responsible for intercepting
requests for JSP pages. To process all JSP elements in the page, the container first turns the
JSP page into a servlet (known as the [JSP page implementation class). The conversion is
pretty straightforward; all template text is converted to println () statements similar to

34

Chapter 3. JSP Overview

the ones in the handcoded servlet shown in Example 3-1, and all JSP elements are converted
to Java code that implements the corresponding dynamic behavior. The container then
compiles the servlet class.

Converting the JSP page to a servlet and compiling the servlet form the translation phase.
The JSP container initiates the translation phase for a page automatically when it receives the
first request for the page. Since the translation phase takes a bit of time, the first user to
request a JSP page notices a slight delay. The translation phase can also be initiated explicitly;
this is referred to as precompilation of a JSP page. Precompiling a JSP page is a way to avoid
hitting the first user with this delay. It is discussed in more detail in Chapter 16.

The JSP container is also responsible for invoking the JSP page implementation class (the
generated servlet) to process each request and generate the response. This is called the request
processing phase. The two phases are illustrated in Figure 3-3.

Figure 3-3. JSP page translation and processing phases

I helkojsp
ISP Container |_
Translation

Clent Ef _ phase

helkaServletjava
o GET Mhellojsp ; o Genefate

@{ o Compile

* <himl>Hellal</himl» -

Reruest
hellaberviet.dass] = pracessing

phasa

As long as the JSP page remains unchanged, any subsequent request goes straight to the
request processing phase (i.e., the container simply executes the class file). When the JSP
page is modified, it goes through the translation phase again before entering the request
processing phase.

The JSP container is often implemented as a servlet configured to handle all requests for JSP
pages. In fact, these two containers -- a servlet container and a JSP container -- are often
combined in one package under the name web container.

So in a way, a JSP page is really just another way to write a servlet without having to be a
Java programming wiz. Except for the translation phase, a JSP page is handled exactly like a
regular servlet: it's loaded once and called repeatedly, until the server is shut down. By virtue
of being an automatically generated servlet, a JSP page inherits all the advantages of a servlet
described in Chapter 2: platform and vendor independence, integration, efficiency, scalability,
robustness, and security.

3.3.1 JSP Elements

There are three types of JSP elements you can use: directive, action, and scripting.

35

Chapter 3. JSP Overview

3.3.1.1 Directive elements

The directive elements, shown in Table 3-1, specify information about the page itself that
remains the same between requests -- for example, if session tracking is required or not,
buffering requirements, and the name of a page that should be used to report errors, if any.

Table 3-1. Directive elements

Element Description

Defines page-dependent attributes, such as session tracking, error page, and
buffering requirements

v

<%@ page ... %

<>@ retnee - includes a file during the translation phase

<>@ FeOHE - IDeclares a tag library, containing custom actions, that is used in the page

3.3.1.2 Standard action elements

Action elements typically perform some action based on information that is required at the
exact time the JSP page is requested by a browser. An action can, for instance, access
parameters sent with the request to do a database lookup. It can also dynamically generate
HTML, such as a table filled with information retrieved from an external system.

The JSP specification defines a few standard action elements, listed in Table 3-2.

Table 3-2. Standard action elements

Action element |Description

<jsp:useBean> Makes a JavaBeans component available in a page

Gets a property value from a JavaBeans component and adds it to the
response

<jsp:getProperty>

<jsp:setproperty>[Sets a JavaBeans component property value

Includes the response from a servlet or JSP page during the request

<jsp:include> .
processing phase

<jsp:forward> Forwards the processing of a request to servlet or JSP page

Adds a parameter value to a request handed off to another servlet or JSP

<jsp:param> ; .))
page using <jsp:include> or <jsp:forward>

Generates HTML that contains the appropriate browser-dependent
<jsp:plugin> elements (OBJECT or EMBED) needed to execute an applet with the Java
Plug-in software

3.3.1.3 Custom action elements and the JSP Standard Tag Library

In addition to the standard actions, the JSP specification includes a Java API a programmer
can use to develop custom actions to extend the JSP language. The JSP Standard Tag Library
(JSTL) is such an extension, with the special status of being defined by a formal specification
from Sun and typically bundled with the JSP container. JSTL contains action elements for
processes needed in most JSP applications, such as conditional processing, database access,
internationalization, and more. This book covers all the JSTL actions in detail.

36

Chapter 3. JSP Overview

If JSTL isn't enough, programmers on your team (or a third party) can use the extension API
to develop additional custom actions, maybe to access application-specific resources or
simplify application-specific processing. The examples in this book use a few custom actions
in addition to the JSTL actions, and three chapters in Part III are dedicated to custom action
development.

3.3.1.4 Scripting elements

Scripting elements, shown in Table 3-3, allow you to add small pieces of code (typically Java
code) in a JSP page, such as an if statement to generate different HTML depending on a
certain condition. Like actions, they are also executed when the page is requested. You should
use scripting elements with extreme care: if you embed too much code in your JSP pages, you
will end up with the same kind of maintenance problems as with servlets embedding HTML.

Table 3-3. Scripting elements

Element |Description

Scriptlet, used to embed scripting code.

<<= ... |Expression, used to embed scripting code expressions when the result shall be
5 added to the response. Also used as request-time action attribute values.

<z1 ... [|Declaration, used to declare instance variables and methods in the JSP page
o implementation class.

3.3.1.5 JavaBeans components

JSP elements, such as action and scripting elements, are often used to work with JavaBeans.
Put succinctly, a JavaBeans component is a Java class that complies with certain coding
conventions. JavaBeans components are typically used as containers for information that
describes application entities, such as a customer or an order.

3.4 JSP Application Design with MVC

JSP technology can play a part in everything from the simplest web application, such as an
online phone list or an employee vacation planner, to full-fledged enterprise applications,
such as a human-resource application or a sophisticated online shopping site. How large a part
JSP plays differs in each case, of course. In this section, I introduce a design model called
Model-View-Controller (MVC), suitable for both simple and complex applications.

MVC was first described by Xerox in a number of papers published in the late 1980s. The key
point of using MVC is to separate logic into three distinct units: the Model, the View, and the
Controller. In a server application, we commonly classify the parts of the application as
business logic, presentation, and request processing. Business logic is the term used for the
manipulation of an application's data, such as customer, product, and order information.
Presentation refers to how the application data is displayed to the user, for example, position,
font, and size. And finally, request processing is what ties the business logic and presentation
parts together. In MVC terms, the Model corresponds to business logic and data, the View to
the presentation, and the Controller to the request processing.

Why use this design with JSP? The answer lies primarily in the first two elements. Remember
that an application data structure and logic (the Model) is typically the most stable part of an

37

Chapter 3. JSP Overview

application, while the presentation of that data (the View) changes fairly often. Just look at all
the face-lifts many web sites go through to keep up with the latest fashion in web design. Yet,
the data they present remains the same. Another common example of why presentation should
be separated from the business logic is that you may want to present the data in different
languages or present different subsets of the data to internal and external users. Access to the
data through new types of devices, such as cell phones and personal digital assistants (PDAs),
is the latest trend. Each client type requires its own presentation format. It should come as no
surprise, then, that separating business logic from the presentation makes it easier to evolve an
application as the requirements change; new presentation interfaces can be developed without
touching the business logic.

This MVC model is used for most of the examples in this book. In Part II, JSP pages are used
as both the Controller and the View, and JavaBeans components are used as the Model. The
examples in Chapter 5 through Chapter 9 use a single JSP page that handles everything, while
Chapter 10 through Chapter 13 show how you can use separate pages for the Controller and
the View to make the application easier to maintain. Many types of real-world applications
can be developed this way, but what's more important is that this approach allows you to
examine all the JSP features without getting distracted by other technologies. In Part 111, we
look at other possible role assignments when JSP is combined with servlets and Enterprise
JavaBeans.

38

Chapter 4. Setting Up the JSP Environment

Chapter 4. Setting Up the JSP Environment

This book contains plenty of examples to illustrate all the JSP features. All examples were
developed and tested with the JSP reference implementation, known as the Apache Tomcat
server, which is developed by the Apache Jakarta project. In this chapter you will learn how
to install the Tomcat server and add a web application containing all the examples used in this
book. You can, of course, use any web server that supports JSP 1.2, but Tomcat is a good
server for development and test purposes. You can learn more about the Jakarta project and
Tomcat, as well as how you can participate in the development, at the Jakarta web site:
http://jakarta.apache.org/.

4.1 Installing the Java Software Development Kit

Tomcat 4 is a pure Java web server with support for the Servlet 2.3 and JSP 1.2 specifications.
In order to use it you must first install a Java runtime environment. If you don't already have
one, you can download a Java SDK for Windows, Linux, and Solaris at
http://java.sun.com/j2se/.

I recommend that you download and install the Java 2 SDK, as opposed to the slimmed-down
Runtime Environment (JRE) distribution. The reason is that JSP requires a Java compiler,
included in the SDK but not in the JRE. Sun Microsystems has made the javac compiler from
the SDK available separately for redistribution by the Apache Software Foundation. So
technically, you could use the JRE and download the Java compiler separately, but even as |
write this chapter, the exact legal conditions for distributing the compiler are changing.

Another alternative is to use the Jikes compiler from IBM
(http://www10.software.ibm.com/developerworks/opensource/jikes/). Tomcat can be
configured to use Jikes instead of the javac compiler from Sun; read the Tomcat
documentation if you would like to try this. To make things simple, though, I suggest
installing the Java 2 SDK from Sun. The examples were developed and tested with Java 2
SDK, Standard Edition, v1.3.1 01 and v1.4. I suggest that you use the latest version of the
SDK available for your platform.

If you need an SDK for a platform other than Windows, Linux, or Solaris, there's a partial list
of ports made by other companies at:

http://java.sun.com/cgi-bin/java-ports.cgi

Also check your operating-system vendor's web site. Most operating-system vendors have
their own SDK implementation available for free.

Installation of the SDK varies per platform, but is typically easy to do. Just follow the
instructions on the web site where you download the SDK.

Before you install and run Tomcat, make sure that the JAVA_ HOME environment variable is
set to the installation directory of your Java environment, and that the Java bin directory is
included in the PATH environment variable. On a Windows system, you can see if an
environment variable is set by typing the following command in a command prompt window:

39

Chapter 4. Setting Up the JSP Environment

C:\> echo %JAVA HOME%
C:\jdk1.3.1 01

If JAVA HOME isn't set, you can set it and include the bin directory in the PATH on a
Windows system like this (assuming Java is installed in C:\jdki.3.1 _01):

C:\> set JAVA HOME=C:\jdkl.3.1 01
C:\> set PATH=6JAVA_HOME%\bin;%PATH%

On a Windows 95/98/ME system, you can add these commands to the C:\AUTOEXEC.BAT
file to set them permanently. Just use a text editor, such as Notepad, and add lines with the set
commands. The next time you boot the PC, the environment variables will be set
automatically. For Windows NT, you can set them permanently from the Environment tab in
the System Properties tool, and for Windows 2000 and Windows XP, you can do the same
with the Systems tool by first selecting the Advanced tab and then Environment Variables.

If you use Linux, Mac OS X, or some other Unix-based platform, the exact commands depend
on which shell you use. With bash, which is commonly the default for Linux, use the
following commands (assuming Java is installed in /usr/local/jdk1.3.1 01):

[hans@gefion /] export JAVA HOME=/usr/local/jdkl.3.1 01
[hans@gefion /] export PATH=$JAVA HOME/bin:$PATH
[hans@gefion /] echo $PATH

/usr/local/jdkl.3.1 01/bin:/usr/local/bin:/bin:/usr/bin

4.2 Installing the Tomcat Server

You can download the Tomcat Server in binary format or as source code that you compile
yourself. If you're primarily interested in learning about JSP, I recommend that you use the
binary download for running the examples in this book and to develop your own applications.
If you're a Java programmer and are interested in seeing how Tomcat is implemented, feel
free to download the source as well and take a look at the internals.

The binary distribution is available at http://jakarta.apache.org/site/binindex.html.

On this page you find three types of builds: release builds, milestone builds, and nightly
builds. Release builds are stable releases that have been tested extensively and verified to
comply with the servlet and JSP specifications. Milestone builds are created as intermediary
steps towards a release build. They often contain new features that aren't yet fully tested but
are generally known to work. A nightly build, however, may be very unstable. It's actually a
snapshot of the latest source code and may have been tested only by the person who made the
latest change. You should use a nightly build only if you're involved in the development of
Tomcat.

I recommend that you download the latest release build. All examples in this book were
developed and tested using the 4.0.4 version, but any release later than 4.0.4 should work fine
as well. When you click on the link for the latest release build and select the bin directory,
you see a list of archive files in different formats, similar to Figure 4-1.

40

Chapter 4. Setting Up the JSP Environment

Figure 4-1. Release build packages

RIS =100

Eie Ed Waw Sesch o Bockmabs Toeks Hep Debag 08

g :J__:J Lj u.i' [rap ikt azeche oipldeiaoataiomcatd Dckoserd [0t | [Sh Seonol :;&:QEE
=

Index of /builds/jakarta-tomcat-4.0/release/v4.0.4/bin

AR E -t oment -4, G-lE-tdE]L. @ J1-Bar-2002 I%:1H J.om
Carra-Tomoar-4.0. 4-LE-jdEid. exe.8 01-Bar-E00F 1Te44 176
Ql-Mac-Z00F i5:Z1 F.6® GIIF .'nhp-r!:ul-ld fils

O01-Bar-2002 17:89 193 GILF conmprassdad fila

v | |

D1-Bar-2007 15518 J.0E
O1-Bar-ZmOd iT: 44 175
AEACER-toment -4, O1-Mar-2002 15:3% 42N
AL LA T AT -4 doEnem. A Di-Bar-200I 17144 175

Ql-War-Z003 I5:40 J.FE GITF compresssd fils

R

O01-Bar-2002 17:89 193 GILFP conmprazsed fila

Cra-Tomoan-4.0.4, 2i] 01-Bar-Z00Z 15550 5.08

e [0 e) P)) e (0 O

OL-Bar-20073 ¥7:85 175

Apache Tomeat 4.0.4

This release of Tomoat 4.0 & avelable i tro difzrest packagmg options

w Rtamidard: Thes w3 Al binary dissvation of Tomea @ which mcdides of rnbonad breanes e an YT, narser (Dermes
[= % FR 6 | Document Do 337 mo) =

|SG

How to continue from here varies a bit depending on your platform.
4.2.1 Windows Platforms

For Windows, select jakarta-tomcat-4.0.4.zip and save it to your hard drive, for instance in a
directory named C:\Jakarta. You can unpack the package either with a ZIP utility program,
such as WinZip or using the jar command that's included in the Java distribution. Use the
Command Prompt window where you set the JAVA HOME and PATH environment
variables earlier, change to the directory in which you downloaded the ZIP file, and unpack it:

C:\> cd Jakarta
C:\Jakarta> jar xvf jakarta-tomcat-4.0.4.zip

This creates a directory structure with a top directory named jakarta-tomcat-4.0.4 with a
number of subdirectories. Like most software packages, the top directory contains a file
named README.txt; do exactly that. Software distributions change and if, for instance, the
instructions in this chapter no longer apply when you download the software, the
README.xt file should contain information about how to get started.

You should also set the CATALINA HOME environment variable to point to the Tomcat
installation directory:

C:\Jakarta> set CATALINA HOME=C:\Jakarta\jakarta-tomcat-4.0.4

If you wonder about the variable name, Catalina is the name of the servlet container, and
Jasper is the name of the JSP container; together they are known as the Tomcat server.

41

Chapter 4. Setting Up the JSP Environment

The Tomcat installation directory contains a number of subdirectories, described later. The
bin directory contains Windows batch files for starting and stopping the server. The batch
files are named startup.bat, shutdown.bat, and catalina.bat. The catalina.bat file is the main
script for controlling the server; it's called by the two other scripts: startup.bat and
shutdown.bat. To start the server in a separate window, change to the bin directory and run the
startup.bat file:

C:\Jakarta> cd jakarta-tomcat-4.0.4\bin
C:\Jakarta\jakarta-tomcat-4.0.4\bin> startup

A new Command Prompt window pops up, and you see startup messages similar to this:

Starting service Tomcat-Standalone
Apache Tomcat/4.0.4

Starting service Tomcat-Apache
Apache Tomcat/4.0.4

Just leave this window open; this is where the server process is running.

If you're running this on a Windows 95/98/ME platform, you may see an error message "Out
of environment space," when you try to start the server. That's because the default amount of
space allocated for environment variables isn't enough. To be able to run Tomcat, run this
command in the Command Prompt window before you run the startup.bat file again:

C:\Jakarta\jakarta-tomcat\bin> COMMAND.COM /E:4096 /P

This command sets the environment space to 4096 bytes (4 KB). That should be enough for
the server. If you still get the same message, use a higher value.

For some installations, this command may not work. If it doesn't, try this instead:

Close the Command Prompt window, and open a new one.
Click on the MS-DOS icon at the top left of the window.
Select the Properties option.

Click on the Memory tab.

Change the Initial Environment value from Auto to 4096.
Click on OK and try to start the server again.

A

At this point, the server may not start due to other problems. If so, the extra Command Prompt
window may pop up and then disappear before you have a chance to read the error messages.
If this happens, you can let the server run in the Command Prompt window with this
command instead:

C:\Jakarta\jakarta-tomcat-4.0.4\bin> catalina run

On Windows NT/2000 and Windows XP, you should first make sure that the Command
Prompt window has a large enough screen buffer so that you can scroll back in case the error
messages don't fit on one screen. Open the Properties window for the Command Prompt
window (right mouse button in the upper left corner), select Layout and set the screen buffer
size height to a large value (for instance 999). Unfortunately, the Command Prompt screen
buffer can't be enlarged for Windows 95/98/ME, so scrolling back isn't an option. If you run
into problems on these platforms, double-check that you have installed the Java SDK

42

Chapter 4. Setting Up the JSP Environment

correctly and that you have set the JAVA HOME and PATH environment variables as
described earlier.

4.2.2 Unix Platforms (Including Linux and Mac OS X)

For Unix platforms, you can download the jakarta-tomcat-4.0.4.tar.gz file, for instance to
/usr/local, and use these commands to unpack it (assuming you have GNU tar installed):

[hans@gefion /] ed /usr/local
[hans@gefion local] tar xzvf jakarta-tomcat-4.0.4.tar.gz

If you don't have GNU far installed on your system, use the following command:

[hans@gefion local] gunzip -c jakarta-tomcat-4.0.4.tar.gz | tar xvf -

This creates a directory structure with a top directory named jakarta-tomcat-4.0.4 with a
number of subdirectories. Like most software packages, the top directory contains a file
named README.txt; do exactly that. Software distributions change and if, for instance, the
instructions in this chapter no longer apply when you download the software, the
README.xt file should contain information about how to get started.

You should also set the CATALINA HOME environment variable to point to the Tomcat
installation directory:

[hans@gefion local] export CATALINA HOME=/usr/local/jakarta-tomcat-4.0.4

If you wonder about the variable name, Catalina is the name of the servlet container, and
Jasper is the name of the JSP container; together they are known as the Tomcat server.

The Tomcat installation directory contains a number of subdirectories, described later. The
bin directory contains Unix scripts for starting and stopping the server. The scripts are named
startup.sh, shutdown.sh, and catalina.sh.

Start the server with this command:

[hans@gefion jakarta-tomcat-4.0.4] ./startup.sh

If you want to have Tomcat start each time you boot the system, you can add the following
commands to your /etc/rc.d/rc.local (or equivalent) startup script:

export JAVA HOME=/usr/local/jdkl.3.1 01
export CATALINA HOME=/usr/local/jakarta-tomcat-4.0.4
$CATALINA HOME/bin/startup.sh &

4.3 Testing Tomcat

The Tomcat installation directory contains a number of subdirectories. All of them are
described in the README.txt file, but the most important ones are:

bin

Scripts for starting and stopping the Tomcat server.

43

Chapter 4. Setting Up the JSP Environment

conf

Tomcat configuration files.
webapps
Default location for web applications served by Tomcat.

Two more subdirectories under the Tomcat home directory are created the first time you start
the server:

logs

Server log files. If something doesn't work as expected, look in the files in this
directory for clues as to what's wrong.

work

A directory for temporary files created by the JSP container and other files. This
directory is where the servlets generated from JSP pages are stored.

To test the server, run the startup script as described in the platform-specific sections, and
(assuming you're running Tomcat on the same machine as the browser and that you're using
the default 8080 port for Tomcat) open a browser and enter this URL in the Location/Address
field: http://localhost:8080).

The Tomcat main page is shown in the browser, as in Figure 4-2, and you can now run all
servlet and JSP examples bundled with Tomcat to ensure everything works.

44

Chapter 4. Setting Up the JSP Environment

Figure 4-2. The Tomcat main page

Jakoth Papect - Tomcal - Hozilla (Bl 1D 20001221064 o =10 x|
Fie Edl s Seach Go Bsckmals Tasks Hep Detwg G4

:;}_ !) 'l::i -.j' 15 oA oet BB ke i | [Semoh "'_"'-l.-':Q ..
2
B

Tomeat
‘Version 4.0.4

/"@\ | Thns.I Jakarta Project

hezp:/jakarta.apacha_oryg

P IF you're seeing this page via a web browser, it means you've selup
Web Applications Tameat successfully. Cangratulations!

erdat el Az you may hava guessed by now, this is the defauk Tomcat ame page. &
el AW el can ba found on the local filssyslem

SCATALINA _HOME webapps/ROOTS indes, html

Documentation whare “FCATALIMS_HOME" 15 the root of the Tomaat installation directony.
' " " IMyoarme Seeng Mis pade, Snd you donT tunk you should B, fen s

you're enthar @ user wha has amwed at new instalation of Tomeat, or you'e
A adirenistrates wha hasi't gof h‘u""'lH fw“l‘lq qite gt Prosding the lamss
is the case, plaase rsfar to e 1l tation for mona dedailed H
Miscellaneocus et and administrabon information then i found in @e NSTALL file.

Lt Paoes Sie | pclsded with this release are a hostof sampie Sendets and JSPs (with

: g0 sled Source Cocky), edardsee documentation [mckdag the Serel
23 and JSF 1.2 AP| JawaDoc), and an introductony guide to developing
wab spplcabons

ol A fnd more tonrnation abou the JSP and Sandel techrologies by
subrscrécing bo ons or more of B1e folowing Serdet and JSP refated intansst
ligt=

& jep-nterestifiava sun.com
= garvlet-interestfjava sun.com
[F = 9 FH & | Document Do 3233 mo| =g

| E

If you're trying this on a machine that sits behind a proxy, for instance on a corporate
network, and instead of Tomcat's main page you see an error message about not being able to
connect to localhost, you need to adjust your proxy settings. For Netscape 6 and Mozilla,
you find the proxy settings under Edit —* Preferences —* Advanced —* Proxies, and for
Internet Explorer 5, you find them under Tools —* Internet Options —* Connections —* LAN
Settings. Make sure that the proxy isn't used for local addresses, such as 1ocalhost and
127.0.0.1.

When you're done testing Tomcat, you stop the server like this:

C:\Jakarta\jakarta-tomcat-4.0.4\bin> shutdown
You should always stop the server like this, as opposed to killing the Tomcat process with

Ctrl-C. Otherwise the applications don't get a chance to close down gracefully, and when you
start to connect to external resources, such as a database, various problems may occur.

4.4 Installing the Book Examples

All JSP pages, HTML pages, Java source code, and class files for the examples can be
downloaded from the O'Reilly site http://www.oreilly.com/catalog/jserverpages2/.

They can also be downloaded from the book web site that I maintain:

http://www.TheJSPBook.com/examples/jspbook.zip

45

Chapter 4. Setting Up the JSP Environment

The file that contains all examples, accessible from this page, is called jspbook.zip. Save the
file on your hard drive, for instance in C:\JSPBook on a Windows platform, and unpack it:

C:\JSPBook> jar xvf jspbook.zip
You can use the same command on a Unix platform.

Two new directories are created: ora and src. The first directory contains all examples
described in this book, and the second contains the Java source files for the JavaBeans,
custom actions, servlets, and utility classes used in the examples.

The examples directory structure complies with the standard Java web application format
described in Chapter 2. You can therefore configure any Servlet 2.3-compliant web container
to run the examples.

If you like to use a container other than Tomcat, be sure to read the documentation for that
container for instructions on how to install a web application.

To install the example application for Tomcat, simply copy the web application directory
structure to Tomcat's default directory for applications, called webapps. Use this command on
a Windows platform:

C:\JSPBook> xcopy /s /i ora $CATALINA HOMES\webapps\ora

On a Unix platform it looks like this:

[hans@gefion jspbook] cp -R ora $CATALINA_HOME/webapps

Recall from Chapter 2 that each web application in a server is associated with a unique URI
prefix (the context path). When you install an application in Tomcat's webapps directory, the
subdirectory name is assigned automatically as the URI prefix for the application (that is, /ora
in this case).

At this point, you must shut down and restart the Tomcat server. After that, you can point
your browser to the ora application with the following URL:

http://localhost:8080/ora/

You should see a start page, as in Figure 4-3, that contains links for all examples in this book.

46

Chapter 4. Setting Up the JSP Environment

Figure 4-3. JSP book examples start page

R L - o alls OB = HWIZH0E =00 x|
Eie Ed Yew Deach Go Becdmals Taks Hep [
L"J:J '-}_1 R P | [Seamh | “Fio
f B
| Welcome to JavaServer Pages, 2nd
| Edition i
| on L
| b Here you find afl examples descnbad in the book, as wel s the [oal far all
| \ Tawa classes used & the examples. T hope you wall hoes fin readimg the book and
| L that woo'E find the exnmples usesal
: - FHarme Bergiten
|
! Chapter 5 Chapter & Chapter 7
i € ST
S
Sourpe
{0 & 94 B i | Doosvert Dore 217 smcs] sk

4.5 Example Web Application Overview

The examples for this book are packaged as a standard Java web application, as described in
Chapter 2. All servers compliant with the Servlet 2.2 specification (or later) supports this file
structure, so you can use the example application as a guideline when you create your own
web applications. How a web application is installed isn't defined by the specification,
however, so it varies between servers. With Tomcat, you simply copy the file structure to the
special webapps directory and restart the server. To modify the configuration information for
an application, you need to edit the application's WEB-INF/web.xml file using a text editor.
Other servers may offer special deployment tools that copy the files where they belong and let
you configure the application using a special tool or through web-based forms.

If you look in the ora web application directory, you see that it contains an index.html file and
a number of directories corresponding to chapters in this book. These directories contain all
the example JSP and HTML pages.

There's also a WEB-INF directory with a web.xml file, a [lib directory, and a classes directory.
We will look at this in much more detail later, starting in Chapter 5, but here's a quick review:

e The web.xml file contains configuration information for the example application in the
format defined by the servlet specification. It's too early to look at the contents of this
file now; we will return to parts of it when needed.

e The /ib and classes directories are standard directories, also defined by the servlet
specification. A very common question asked by people new to servlets and JSP (prior
to the standard web application format) was, "Where do I store my class files so that
the server can find them?" The answer, unfortunately, differed depending on which

47

Chapter 4. Setting Up the JSP Environment

implementation was used. With the standard web application format, it's easy to
answer this question: if the classes are packaged in a JAR file, store the JAR file in the
lib directory; otherwise use the classes directory (with subdirectories mirroring the
classes' package structure). The server will always look for Java class files in these
two directories.

The /ib directory for the example application contains a number of JAR files. The
orataglib 2 0.jar file contains all the Java class files for the custom actions used in
this book, oraclasses 2 (0.jar contains the class files for beans and servlets used in the
examples, struts.jar contains the Struts framework classes described in Chapter 18,
and jdom.jar contains JDOM classes used for a validator example in Chapter 21. The
other JAR files contain the JSTL Reference Implementation plus all the packages that
the JSTL implementation depends on.

The classes directory contains the class for the JSPSourceServlet that displays
the raw source code for the example JSP pages, so you can see what they look like
before they are processed by the server. It also contains all .properties tiles with
localized text for the example in Chapter 13 and a few test servlets described in
Chapter 18.

If you want to try some of your own JSP pages, beans, and custom actions while reading this
book, you can simply add the files to the example application structure: JSP pages in any
directory except under WEB-INF, and Java class files in either the classes or the /ib directory
depending on if the classes are packaged in a JAR file or not. If you want to use the book's
custom actions in another application, copy the orataglib 2 0.jar file to the WEB-INF/lib
directory for the other application.

48

Part IT: JSP Application Development

Part Il: JSP Application Development

The focus of this part of the book is on developing JSP-based web applications
using both standard JSP elements and custom components. Through the use of
practical examples, you will learn how to handle common tasks such as
validating user input, accessing databases, authenticating users and protecting
web pages, localizing your web site, and more.

Chapter 5
Chapter 6
Chapter 7
Chapter 8
Chapter 9
Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16

49

Chapter 5. Generating Dynamic Content

Chapter 5. Generating Dynamic Content

JSP is all about generating dynamic content: content that differs based on user input, time of
day, the state of an external system, or any other runtime conditions. JSP provides you with
lots of tools for generating this content. In this book, you will learn about them all -- standard
actions, custom actions, the JSP Standard Tag Library, JavaBeans, and scripting elements.
Before going into all of that, however, let's start with a simple example to get a better feel for
how the basic JSP elements work.

5.1 Creating a JSP Page

Recall from Chapter 3 that a JSP page is just a regular HTML page with a few special
elements. A JSP page should have the file extension .jsp, which tells the server that the page
needs to be processed by the JSP container. Without this clue, the server is unable to
distinguish a JSP page from any other type of file and sends it unprocessed to the browser.

When working with JSP pages, you just need a regular text editor such as Notepad on
Windows or Emacs on Unix. There are a number of tools that may make it easier for you,
such as syntax-aware editors that color-code JSP and HTML elements. Some Interactive
Development Environments (IDE) even include a small web container that allows you to
easily execute and debug the pages during development. There are also several web-page
authoring tools -- the type of tools often used when developing regular HTML pages -- that
supports JSP to some degree. You can browse through a fairly extensive list of tools like this
at my web site: http://TheJSPBook.com/. I recommend that you do not use them initially,
though; it's easier to learn how JSP works if you see the raw page elements before you use
tools that hide them.

The first example JSP page, named easy.jsp, is shown in Example 5-1.

Example 5-1. JSP page showing a dynamically calculated sum (easy.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>

<%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
1 + 2 4+ 3 = <c:out value="${1 + 2 + 3}" />

</body>
</html>

The easy.jsp page displays static HTML plus the sum of 1, 2, and 3, calculated at runtime and

dynamically added to the response. We'll look at all the different pieces soon, but first you
may want to run the example to see how it works.

50

Chapter 5. Generating Dynamic Content

5.2 Installing a JSP Page

A complete web application may consist of several different resources: JSP pages, servlets,
applets, static HTML pages, custom tag libraries, and other Java class files. Until very
recently, an application with all these components had to be installed and configured in
different ways for different servers, making it hard for web application developers to provide
easy-to-use installation instructions and tools.

Starting with the Servlet 2.2 specification, there's a standard, portable way to package all web
application resources, along with a deployment descriptor. The deployment descriptor is a file
named web.xml, containing information about security requirements, how all the resources fit
together, and other facts about the application. The deployment descriptor and all the other
web application files are placed in a WAR file, arranged in a well-defined hierarchy. A WAR
file has a .war file extension and can be created with the Java jar command or a ZIP utility
program, such as WinZip (the same file format is used for both JAR and ZIP files).

Having a standardized web application format lets container vendors develop installation and
configuration tools that make it easy to install an application. During installation, the
container is free to unpack the contents of the WAR file and store it for runtime use in any
way it sees fit, but the application developer needs to deal with only one delivery format.

Even though a container is required to know how to deal only with applications packaged as a
WAR file, most (if not all) containers also let you store your application files directly in a
filesystem using the same file structure as is defined for the WAR file. During development,
it's more convenient to work with the files in a regular filesystem structure instead of creating
an updated WAR file every time you make a change. In Tomcat 4, for instance, any
subdirectory under the webapps directory is assumed to be a web application, using the
standard web application file structure.

The structure required for both the WAR file and the filesystem is outlined here, using some
of the files in the example application for this book:

/index.html

/cover.gif

/chb5/easy.jsp

/WEB-INF/web.xml
/WEB-INF/classes/JSPSourceServlet.class
/WEB-INF/lib/orataglib 2 0.jar

The top level in this structure is the document root for all public web application files, such as
HTML pages, JSP pages, and image files -- in other words, all the files requested directly by
the browser. For instance, the easy.jsp file used in this chapter is stored in a subdirectory off
the top level called ch5. If the application is installed with the context path ora (more about
this later), you use a URL such as http://localhost:8080/ora/ch5/easy.jsp to access the JSP

page.

You're probably wondering about the WEB-INF directory. This directory contains the
application deployment descriptor (web.xml), as well as subdirectories for other types of
resources, such as Java class files and configuration files. A browser doesn't have access to
the files under this directory, so it's a safe place for files you don't want public.

51

Chapter 5. Generating Dynamic Content

The deployment descriptor file, web.xml, is an XML file with configuration information for
the application. You will get much more familiar with the contents of this file as you proceed
through the book. (Appendix F also contains a complete reference of this file.) In addition,
two WEB-INF subdirectories have special meaning: /ib and classes. All application class files
(such as servlet and custom tag library classes) must be stored in these two directories. The /ib
directory is for Java archive (JAR) files (compressed archives of Java class files). Class files
that aren't packaged in JAR files must be stored in the classes directory, which can be
convenient during development. The files must be stored in subdirectories of the classes
directory that mirror their package structure and must follow the standard Java conventions.
For instance, a class in a package named com.ora.jsp must be stored in the WEB-
INF/classes/com/ora/jsp directory.

As with pretty much everything related to JSP, directory and filenames in the web application
structure are case-sensitive. If something doesn't work right, the first thing to check is that the
WEB-INF directory is created with all caps, and that the case used for a JSP page in the URL
matches exactly the case used in the filename. On a Windows platform, you may want to use
a Command Prompt window and the D/IR command to check this, since the names shown in
the Windows Explorer tool adjusts the names and sometimes shows a directory name like
WEB-INF as Web-inf.

5.3 Running a JSP Page

Assuming you have installed all book examples as described in Chapter 4, first start the
Tomcat server and load the book examples main page by typing the URL
http.//localhost:8080/ora/index.html in the browser address field. Note how the /ora part of
the URL matches the Tomcat webapps subdirectory name for the example application. This
part of the URL is called the application's context path; every web application has a unique
context path, assigned one way or another when you install the application. Tomcat 4 uses the
subdirectory name as the context path by default, but other containers may prompt you for a
path in an installation tool or use other conventions. When you make a request for a web
application resource (an HTML or JSP page, or a servlet), the first part of the URL (after the
hostname and port number) must be the context path, so the container knows which
application should handle the request.

There's one exception to this rule; one application per container may be installed as the
default, or root, application. For Tomcat 4, this application in stored in the webapps/ROOT
directory, by default. Requests for resources in the default application don't start with a
context path (or more accurately, have an empty string as their context path). For instance, the
http.//localhost:8080/index.html URL is used to request a page in the default application.

You can run Example 5-1 by clicking the "JSP is Easy" link from the book examples main
page, shown in Figure 5-1. You should see a result like the one shown in Figure 5-2.

52

Chapter 5. Generating Dynamic Content

Figure 5-1. JSP book examples main page

SR bk, ebimpias - Moaila (Buld 10 2001122106} R e =
Eie Edl Mew Seach Go Bockmarks Tasks Help Debag 04
" :ja oo l_j ui' [it altod E0BM iadines bl | [Semoh ""_'\'-l.-':ﬂ
B
T Welcome to JavaServer Pages, 2nd
- Edition]
%
Here youfind afl examples descnbed in the book, as wel as the [oval far all
] Jawa classes used m the examples. T hope you wall hove fin readimg the book and
that wou'l find the exneples usefl
i FHawre Pargaten
Chapter 5 Chapter & Chapter 7
Souce Souree
Senree
Seurie
Source
rssage |5 |
[} = 9 F8 o | Documant Do J317) _I_i
Figure 5-2. The "JSP is Easy" example output
J5F iz Fazy - Warile (Buid ;0011 22106} B =)=
Eb Edl Yam Smmch o Bockresbs Tetkr Help Debug Q&
e @ D O [s | S <o [l
=
JSP is as easy as ...
1+2+3=%
O & 95 M &% Docisrenl Dons [1181 e X

The page shown in Example 5-1 contains both regular HTML elements and JSP elements. If
you use the View Source function in your browser, you notice that none of the JSP elements
are visible in the page source. That's because the server processes the JSP elements when the
page is requested, and only the resulting output is sent to the browser. The HTML elements,
on the other hand, are sent to the browser as-is, defining the layout of the page. To see the
unprocessed JSP page in a separate window, you can click on the source link for the easy.jsp
file in the book example's main page. The source link uses a special servlet to send the
unprocessed JSP page directly to the browser instead of letting the server process it. This
makes it easier for you to compare the source page and the processed result.

5.4 Using JSP Directive Elements

Let's look at each piece of Example 5-1 in detail. The first two lines are JSP directive
elements. Directive elements specify attributes of the page itself, such as the type of content
produced by the page, page buffering requirements, declaration of other resources used by the
page, and how possible runtime errors should be handled. Hence, a directive doesn't directly

53

Chapter 5. Generating Dynamic Content

affect the content of the response sent to the browser. There are three different JSP directives:
page, include, and taglib. In this chapter, we're using the page and the taglib
directives. The include directive is described in Chapter 16.

JSP pages typically starts with a page directive that specifies the content type for the page:

<%@ page contentType="text/html" %>

A JSP directive element starts with a directive-start identifier (<% @), followed by the directive
name (page in this case), directive attributes, and ends with $>. A directive contains one or
more attribute name/value pairs (e.g., contentType="text/html"). Note that JSP
element and attribute names are case-sensitive, and in most cases, the same is true for attribute
values. All attribute values must also be enclosed in single or double quotes.

The page directive has many possible attributes. In Example 5-1, only the contentType
attribute is used. It specifies the MIME-type for the content the page produces. The most
common values are text/html for HTML content and text/plain for preformatted,
plain text. But you can also specify other types, such as text/xml for browsers that support
XML or text/vnd.wap.wnl for devices such as cell phones and PDAs that have built-in
WML browsers. The container sends the content type information to the browser as a
response header called Content-Type, so the browser knows how to interpret and render
the page. If you omit the contentType attribute, the container sets the header to
text/html.

Some of the other page directive attributes you may use from time to time are errorPage,
isErrorPage, session, pageEncoding, buffer, and autoFlush. I show you how to
use these attributes later. If you want to use scripting elements in your JSP pages, you may
also need to use the 1anguage and import attributes, covered in Chapter 15. The remaining
attributes are hardly ever used, but if you're curious, you can read about them in Appendix A.

The second directive in Example 5-1 is a taglib directive. It is used to declare a custom tag
library that is used in the page. In Example 5-1, the taglib directive declares a JSTL tag
library. The uri attribute contains a unique string that identifies the library and the prefix
attribute defines the name prefix used for the library on this page. Let's leave it at that for the
moment; [promise to tell you more about custom tag libraries and JSTL later in this chapter.

5.4.1 JSP Comments

Example 5-1 also shows how a JSP comment looks:

<%-- Calculate the sum of 1 + 2 + 3 dynamically --%>

Everything between <%-- and --%> is ignored when the JSP page is processed. You can use
this type of comment to describe what's going on the page, or to temporarily comment out
pieces of the page to test different alternatives. Since a JSP comment is a JSP element, it's
never sent to the browser.

54

Chapter 5. Generating Dynamic Content

5.5 Using Template Text

Besides JSP elements, notice that the easy.jsp page contains mostly regular HTML,
highlighted in Example 5-2.

Example 5-2. JSP page template text

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">
<h1>JSP is as easy as ...</hl>
<%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
1+ 2 + 3 = <c:out value="${1 + 2 + 3}" />
</body>
</html>

In JSP parlance, this is called femplate text. Everything that's not a JSP element (i.e., not a
directive, action, or scripting element) is template text. Template text is sent to the browser
as-is. This means you can use JSP to generate any type of text-based output, such as XML,
WML, or even plain text. The JSP container doesn't care what the template text represents.

5.6 Using JSP Action Elements

Besides the fixed template text, the easy.jsp page also produces dynamic content. It has very
simple dynamic content -- the sum of 1, 2 and 3 calculated at runtime -- but step back a
moment and think about the type of dynamic content you see on the Web every day. Common
examples might be a list of web sites matching a search criterion on a search engine site, the
content of a shopping cart on an e-commerce site, a personalized news page, or messages in a
bulletin board. The actual data for the dynamic content can come from many types of sources,
for instance from a database, an XML document, or data accumulated in memory based on
previous requests. The dynamic data needs to be combined with regular HTML elements into
a page with the right layout, navigation bars, the company logo, and so forth, before it's sent
to the browser. When using JSP, the regular HTML is the template text described earlier, and
the dynamic data is inserted at the appropriate place in the template text using a JSP action
element.

A JSP action is executed when a JSP page is requested (this is called the request processing
phase, as you may recall from Chapter 3). In other words, JSP action elements represent
dynamic actions that take place at runtime, as opposed to JSP directives, which are used only
during the translation phase (when the JSP page is turned into Java servlet code). An action
can add text to the response, as in the example used in this chapter, but it can also do other
things such as write to a file on the server, send an email, or retrieve data from a database that
is later added to the response by other actions. Example 5-3 shows the easy.jsp page again,
this time with the JSP action element highlighted.

55

Chapter 5. Generating Dynamic Content

Example 5-3. JSP action elements

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>

<%-- Calculate the sum of 1 + 2 + 3 dynamically --%>
1 + 2 4+ 3 =<c:out value="${1 + 2 + 3}" />

</body>
</html>

An action is represented by an HTML-like element in a JSP page. If the action element has a
body, it's represented by an opening tag, possibly with attribute/value pairs, a body, and a
closing tag:

<prefix:action name attrl="valuel" attrZ="valuelZ">
action body
</prefix:action name>

This is identical to the HTML element syntax and as with HTML elements, the body of an
action element can contain text or other action elements.

If the element doesn't have a body, as in Example 5-3, you can use this shorthand syntax
instead:

<prefix:action name attrl="valuel" attrZ="valueZ" />

Note that the single tag for an element without a body (an empty element) ends with /> as
opposed to just >. If you think this looks like XML syntax, you're absolutely right. The
shorthand is equivalent to an opening tag, and empty body, and a closing tag:

<prefix:action name attrl="valuel"
attrZ="valuel"></prefix:action name>

Action elements, or tags as they are often called, are grouped into libraries (known as fag
libraries). The element name, used in the opening and closing tags, is composed of two parts:
a prefix and the action's name, separated by a colon, with no space characters between any
parts. Again, if you're familiar with XML syntax, you may recognize that the prefix is used as
an XML namespace. You define the namespace prefix you want to use for the library with the
taglib directive described earlier:

<%@ taglib prefix="c" uri="http://java.sun.com/jsptl/core" %>

<ec:out value="S${1 + 2 + 3}" />

The prefix serves two purposes: it makes it possible for actions in different libraries to have
the same name, and it makes it possible for the container to figure out which library a specific
action belongs to. When the container finds an action element, it locates the taglib directive

56

Chapter 5. Generating Dynamic Content

that declares the library that corresponds to the action name prefix. The taglib directive's
uri attribute is a unique identifier for the tag library, which the container uses to find the
information it needs to process the action.

Actions can be grouped into three categories: standard, custom, and JSP Standard Tag
Library.

Standard actions are the few actions defined by the JSP specification itself. All JSP standard
actions (Table 5-1) use the prefix jsp. Since the prefix is fixed, and the behavior for all
standard actions is defined by the specification, you don't need to declare the standard actions
with a taglib directive.

Table 5-1. Standard action elements

Action element |Description

<jsp:useBean> Makes a JavaBeans component available in a page

Gets a property value from a JavaBeans component and adds it to the
response

<jsp:getProperty>

<jsp:setProperty>|Set a JavaBeans property value

Includes the response from a servlet or JSP page during the request

<jsp:include> .
pProcessing phase

<jsp:forward> Forwards the processing of a request to servlet or JSP page

Adds a parameter value to a request handed off to another servlet or JSP

<jsp:param> ; i .)
page using <jsp:include>or <jsp:forward>

Generates HTML that contains the appropriate client browser-dependent
<jsp:plugin> elements (OBJECT or EMBED) needed to execute an applet with the Java
Plug-in software

The JSP specification also defines a set of Java classes with which a Java programmer can
develop new actions that can be used in any JSP page. Such actions are called custom actions.
We take a closer look at custom actions in Chapter 7.

5.6.1 JSP Standard Tag Library

The third group is called JSP Standard Tag Library (JSTL) actions. Until very recently,
programmers had to develop custom actions even for very generic tasks, such as selecting
different parts of a page based on a runtime condition or looping through a collection of data;
none of the JSP standard actions support these common tasks. The result was, of course, that
every Java programmer with some self-respect implemented a set of custom actions for all the
generic tasks her JSP team needed. To reduce this programming effort, and avoid the
confusion caused by a zillion different implementations of if and loop actions with slightly
different features, a group of experienced tag library developers (including yours truly) came
together through the Java Community Process to define what's called the JSP Standard Tag
Library. The 1.0 version was released in June 2002. While the name of the standard contains
the word "library" (singular), it's in fact a set of libraries that group related actions:

Core

Conditional processing and looping, importing data from external sources, etc.

57

Chapter 5. Generating Dynamic Content

XML processing

Processing of XML data, such as transforming and accessing individual elements.
Internationalization (I18N) and formatting

Format and parse localized information, insert localized information in a page.
Relational database access (SQL)

Read and write relational database data

The <c:out> action in Example 5-3 is part of the JSTL core library. It adds the result of the
expression (written in the Expression Language described in the next section) specified as the
value attribute to the response. In this case, the evaluation of the expression is the sum of 1,
2, and 3, as you can see in Figure 5-2.

5.6.1.1 The JSTL Expression Language

JSTL defines a simple Expression Language for setting action attribute values based on
runtime data from various sources. The EL is inspired by JavaScript (or ECMAScript, as it's
formally called), and to some extent XPath (a language used to access pieces of an XML
document) but is much more forgiving when a variable doesn't contain a value (null) and
performs more data-type conversions automatically. These features are important for a web
application, because the input is mostly in the form of request parameters, which are always
text values but often need to be used as numbers or Boolean values (t rue or false) by the
application. A web application must also handle the absence of a parameter gracefully, and
the EL makes provisions for this as well. What you don't find in the EL are statements, such
as if/else, for, and switch; in JSP, the type of logic implemented by such statements in
a general-purpose language are instead implemented as action elements.

To give you a feel for how the EL is used, let's look at the expression used for the JSTL
<c:out> action in Example 5-1:

<c:out value="${1 + 2 + 3}" />

An EL expression always starts with the ${ delimiter (a dollar sign plus a left curly brace)
and ends with } (a right curly brace). The expression can include literals (like the numeric
literals used here), a set of implicit variables that provide access to request data, variables
representing application data, and most operators that you're used to from other languages,
such as the addition + sign used in this example. The EL is used extensively in this book,
illustrating all the different features through examples, and a more formal description of the
language is included in Appendix C.

By now you have a rough idea of what JSP is all about. We have covered how to create and
install a JSP page based on the standard web application file structure and how to request a
JSP page from a browser. We have also looked at the primary parts of a JSP page --
directives, template text, and action elements -- and seen how they are processed when the
page is requested. Finally, you've got a first glimpse of the JSTL and its EL. In the following

58

Chapter 5. Generating Dynamic Content

chapters I add details to all this and introduce the other JSP and JSTL features you need to
develop real web applications.

59

Chapter 6. Using JavaBeans Components in JSP Pages

Chapter 6. Using JavaBeans Components in JSP Pages

The JavaBeans specification defines a set of programming conventions for Java classes that
should be used as pluggable components. In layman's terms, tools that have no inside
information about a class can use it if it's developed according to these conventions. For
instance, a GUI builder tool can support widgets developed as JavaBeans components.
A JavaBeans component, or just a bean for short, is often used in JSP as the container for the
dynamic content to be displayed by a web page. It typically represents something specific,
such as a person, a product, or a shopping order. When JSP is combined with servlets,
the bean can be created and initialized with data by the servlet and passed to a JSP page that
simply adds the bean's data to the response. But even in a pure JSP application, a bean is
a useful tool, for instance for capturing and validating user input.

A programmer must develop the bean, but someone who doesn't have any programming
experience can then use it in a JSP page. JSP defines a number of standard actions for
working with beans, and the JSTL Expression Language accepts beans as variables in
expressions. In this chapter, we take a closer look at what a bean is and how it can produce
dynamic content in a page. We'll return to beans in Chapter 8 to see how they can be used for
input validation.

6.1 What Is a Bean?

As 1 said earlier, a bean is simply a Java class that follows certain coding conventions, so it
can be used by tools as a component in a larger application. It can be instantiated and made
available to the JSP page in a couple of ways. In an application that uses a servlet as a
frontend for all business logic, the bean is typically created by the business logic code and
sent to the JSP page to include its contents in the response. I describe this approach in detail in
Chapter 18 and Chapter 19. The bean can also be created directly by a JSP page. This is the
approach used in this chapter.

JavaBeans Introduction for Java Programmers

If you need to develop your own beans, here's a brief description of what it takes to
be a bean. (You can learn more about bean development for JSP pages in Chapter
19.) JavaBeans are regular Java classes designed according to the set of guidelines
defined by the JavaBeans specification. Here's the CartoonBean used in this
chapter:

package com.ora.jsp.beans.motd;

import java.util.*;

public class CartoonBean implements java.io.Serializable {
private static int index = -1;
private List fileNames;

public CartoonBean() {
initFilelList();
}

60

Chapter 6. Using JavaBeans Components in JSP Pages

public String getFileName() {

index++;
if (index > fileNames.size() - 1) {
index = 0;

}

return (String) fileNames.get (index) ;

}

private void initFilelList() {
fileNames = new ArrayList();
fileNames.add ("dilbert2001113293109.gif");

}

You should always use a package name for a bean class to make it easier to use the
bean in a JSP page in a portable way. I explain the details in Chapter 19.

A bean class must have a no-argument constructor. This allows a tool to create any
bean in a generic fashion knowing just the class name.

The bean properties are accessed through getfer and setter methods. Getter and
setter method names are composed of the word get or set, respectively, plus
the property name, with the first character of each word capitalized. Here,
getFileName () is the getter method for the property named fileName.
A getter method has no arguments and returns a value of the property's type, while
a setter method takes a single argument of the property's type and has a void return
type. A readable property has a getter method; a writable property has a setter
method. Depending on the combination of getter and setter methods, a property is
read-only, write-only, or read/write.

Finally, the bean class should implement the java.io.Serializable or
the java.io.Externalizable interface to allow a tool to save and restore
the bean's state.

Data held by a bean is referred to as the bean's properties. The property name is case-sensitive
and always starts with a lowercase letter. A property is either read-only, write-only or
read/write, and has a value corresponding to a specific Java data type (for instance String,
java.util.Date, or int). Properties can be read and set through the bean's s accessor
methods, which are regular Java methods named according to the JavaBeans conventions.
What you need to know to use a bean in a JSP page is its class name, the property names, the
property data types, the property access types, and a description of the data represented by
each property. You don't have to worry too much about the data type, since the JSP elements
used to get and set properties typically handles the conversion between regular string values
and the real Java type transparently. Table 6-1 shows all the required information for the first
bean used in this chapter.

Table 6-1. Properties for com.ora.jsp.beans.motd.CartoonBean

Property name Java type |Access |Description

fileName String Read The current cartoon image filename

61

Chapter 6. Using JavaBeans Components in JSP Pages

The nice thing about using a bean is that it can encapsulate all information about the item it
represents in one simple package. Say you have a bean containing information about a person,
such as the person's name, birth date, and email address. You can pass this bean to another
component, providing all the information about the user in one shot. Now, if you want to add
more information about the user, you just add properties to the bean. Another benefit of using
a bean is that the bean can encapsulate all the rules about its properties. Thus, a bean
representing a person can make sure the birthDate property is set to a valid date.

6.2 Declaring a Bean in a JSP Page

Example 6-1 shows a JSP page that uses the bean described in Table 6-1 to display a cartoon
strip.

Example 6-1. A page using a bean (cartoon.jsp)

<html>
<head>
<title>A dose of Dilbert</title>
</head>
<body bgcolor="white">
<h1>A dose of Dilbert</hl>

<jsp:useBean id="cartoon"
class="com.ora.jsp.beans.motd.CartoonBean" />

<img src="images/<jsp:getProperty name="cartoon"
property="fileName" />">

</body>
</html>

Before you use a bean in a page, you must tell the JSP container which type of bean it is and
associate it with a name: in other words, you must declare the bean. The first JSP action in
Example 6-1, <jsp:useBean>, is used for this purpose:

<jsp:useBean id="cartoon" class="com.ora.jsp.beans.motd.CartoonBean" />

The <jsp:useBean> action is one of the JSP standard actions (identified by the jsp
prefix). The action creates an instance of the bean class specified by the c1ass attribute and
associates it with the name specified by the id attribute. The name must be unique in the page
and be a valid Java variable name: it must start with a letter and can't contain special
characters such as dots, plus signs, etc.

Other attributes you can specify for the <jsp:useBean> action are scope, type, and
beanName. Chapter 10 explores how the scope attribute is used. The others are rarely used,
but Appendix A contains descriptions of how you can use them if you wish.

6.3 Reading Bean Properties

A bean's data is represented by its properties. The CartoonBean used in Example 6-1 has
only one property, named fileName, but other beans may have many different properties.
The fileName property's value is the name of an image file that contains a cartoon. There
are two ways to insert a bean property value in a JSP page. Let's look at them one at a time.

62

Chapter 6. Using JavaBeans Components in JSP Pages

6.3.1 Using the <jsp:getProperty> Action

Once you have created a bean and given it a name using the <jsp:useBean> action, you
can get the bean's property values with another JSP standard action, named
<jsp:getProperty>. This action obtains the current value of a bean property and inserts it
directly into the response body.

To include the current £i1eName property value in the page, simply use this tag:

—_n

<jsp:getProperty name="cartoon" property="fileName" />

The name attribute, set to cartoon, refers to the specific bean instance declared by the
<jsp:useBean> action. The <jsp:getProperty> action locates this bean and asks it for
the value of the property specified by the property attribute. In Example 6-1, the property
value is used as the src attribute value for an HTML element. The result is the page
shown in Figure 6-1. The way this bean is implemented, the fileName property value

changes every time you access the property; when you reload the page, a different cartoon
strip is shown.

Figure 6-1. A JSP page with a dynamically inserted image file (Dilbert ©UFS. Reprinted by
Permission)

A ose ol Dilvest - Moz fls isid WD 200111 7E03F =0 =
Fie (& Vew fesch o Bocknsda Jasks psip [abug Q4
[T | _}) | [b Moo B b b et | [Fly Smai b
. ¥
il Mame | _ookrwts o Fres ALk Un o Imaberd Masags o Membesr . Weblel - Correcioms o lizlpamal - Sradtliposis o Midgiace
" o
A dose of Dilbert
T H OBUT ITS HOT IH AN | ot I THIME
1 E GD o i LM DO
?:ﬁ'g'”{gj;q'” I ACTUAL TOWK HALL. [B) wi c1wE YOULL
HBLL - MEETTHS il ARD Tl s ovie- || Sus FIND
TO THPROVE 4] TIOMS TN ADWANCE | GuEsTIONS THAT IT
R i 50 178 MOT A &7 " DOLEMT
COMMUNILATION H Bl "y H]
FEETIHG ey L ™, HATTER
TIE| #ER | st | E
s R N el | A7 e
L W AT - e i
s, T E:r:}[' o s e \;\ F"I.]
Copygright 0 3001 Unibed Feabure Spedicate, bnc, "-r
] G 95 B Doorsent Do (1252 o e

One thing in Example 6-1 may look a bit strange to you: an element
(<jsp:getProperty>) is used as the value of another element's attribute (the tag's
src attribute). While this isn't valid HTML syntax, it is valid JSP syntax. Remember that
everything that's not recognized as a JSP element is treated as template text. The container
doesn't even try to interpret what the template text means, so it doesn't recognize it as invalid
HTML. As far as the JSP container is concerned, the code in Example 6-1 is as valid as:

any old template text <jsp:getProperty name="cartoon"
property="fileName" /> more text

When the JSP page is processed, the action element is replaced with the value of the bean's
property. The resulting HTML that's sent to the browser is therefore valid:

63

Chapter 6. Using JavaBeans Components in JSP Pages

Note that this doesn't mean you can use an action element to set the value of another JSP
action element attribute. Using it to set an HTML element attribute works only because the
HTML element isn't recognized as an element by the container.

6.3.2 Using the JSTL Expression Language

The JSTL Expression Language (EL) also supports access to bean properties. Example 6-2
shows how the <c:out> action with an EL expression can be used to the same effect as the
<jsp:getProperty> action used in Example 6-1.

Example 6-2. Reading a bean property with the JSTL EL (cartoon2.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>A dose of Dilbert</title>
</head>
<body bgcolor="white">
<h1>A dose of Dilbert</hl>

<jsp:useBean id="cartoon"
class="com.ora.jsp.beans.motd.CartoonBean" />

<img src="images/<c:out value="${cartoon.fileName}" />">

</body>
</html>

The EL is described in detail in Chapter 7, but let's just briefly look at how it's used in this
example. A bean created by the <jsp:useBean> action can be used as a variable in an EL
expression. It interprets a name of a bean variable followed by a dot and a property name as a
request to get the value of the property from the bean. The expression used as the <c:out>
value gets the £ileName property value from the carton bean. Example 6-2 shows this
notation in its simplest form, but you can also access properties of properties by adding more
elements to the expression:

<c:out value="${someBean.aProperty.aPropertyOfTheProperty}" />

In this case, the value of aProperty is a bean that has a property named
aPropertyOfTheProperty. You can add as many property names as needed, without
limit. Also note that you can use this bean property syntax for any action attribute that permits
EL expression values, not just for the <c:out> action, as you will see in many examples
later in this book.

Whether to use <jsp:getProperty> or <c:out> to read a bean property value is largely
a matter of preference. The <jsp:getProperty> action has always been part of the JSP
specifications, so you will likely see it used a lot in existing applications. The <c:out>
action was introduced recently as part of the JSTL specification and is more flexible and
somewhat less verbose. For new applications, you may want to use <c:out> but if you
modify an existing application that may still have to be JSP 1.1-compliant, you probably want
to stick to the established conventions and continue to use <jsp:getProperty>.

64

Chapter 6. Using JavaBeans Components in JSP Pages

6.3.3 Including Images with JSP

Example 6-1 illustrates an important detail regarding JSP and images. A common question is
"How do I use JSP to include a dynamic image in a page?" The short answer is: you don't.

First of all, a response can only contain one type of content' so you can't mix HTML and an
image in the same response. You may recall from Chapter 2 that a browser handles an HTML
response with elements by sending a new request for each image and then merging the
HTML and all images. So to include an image in a JSP-generated response, you do the same
as you do in a regular HTML page; add an element with the URI for the image. The
only difference is that the URI may be decided at runtime, as in Examples 6-1 and 6-2.

Secondly, JSP is intended for text responses, not binary responses with image bytes. If you
need to generate an image dynamically, you should use a servlet instead. In the JSP page, you
can add the element with a URI for the servlet and pass data it may need as request
parameters in a query string:

6.4 Setting Bean Properties

If a bean property is writable (write-only or read/write access), you can set the value using
another standard action: <jsp:setProperty>. Table 6-2 shows a bean that is similar to the
CartoonBean used in the previous example, but that also has a writable property named
category.

Table 6-2. Properties for com.ora.jsp.beans.motd.MixedMessageBean

Property name |[Java type [Access |Description

category String Write |The message category, either thoughts or quotes

message String Read [The current message in the selected category

Instead of image files, the MixedMessageBean has a property that contains a funny
message (funny to me at least -- [hope you agree). The bean maintains messages of different
types, and the write-only category property is used to select the type you want. Example 6-
3 shows how you can use this feature.

Example 6-3. A page setting a bean property (message.jsp)

<html>
<head>
<title>Messages of the Day</title>
</head>
<body bgcolor="white">
<hl>Messages of the Day</hl>

<jsp:useBean id="msg"
class="com.ora.jsp.beans.motd.MixedMessageBean" />

<h2>Deep Thoughts - by Jack Handey</h2>

! This is true for the general case. An HTTP response can actually contain multiple parts of different types when
special headers and delimiters are used, but generating such a response with JSP isn't recommended.

65

Chapter 6. Using JavaBeans Components in JSP Pages

<jsp:setProperty name="msg" property='"category"
value="thoughts" />
<i>
<jsp:getProperty name="msg" property="message" />
</i>

<h2>Quotes From the Famous and the Unknown</h2>

<jsp:setProperty name="msg" property="category"
value="quotes" />
<i>
<jsp:getProperty name="msg" property="message" />
</i>

</body>
</html>

As in the previous example, the <jsp:useBean> action creates an instance of the
MixedMessageBean class. The <jsp:setProperty> action is then used to set the bean's
category property value. Like the <jsp:getProperty> action, this action has a name
attribute that must match the id attribute of a <jsp:useBean> action and a property
attribute that specifies which property to set. The value attribute contains the value to use
for the property.

In Example 6-3, the value property is first set to thoughts. This tells the bean to make its
read-only message property pick a message from the "Deep Thoughts by Jack Handey"
(from the Saturday Night Live TV show) collection. A <jsp:getProperty> is used to
insert the message in the response. Another <jsp:setProperty> action then sets the
category property to quotes, switching to the collection of quotes from various people, and
the final <jsp:getProperty> inserts a message from this collection in the page. The result
is shown in Figure 6-2.

Figure 6-2. Dynamic messages from different categories generated by the same bean

Whtsragres of the D - Mozl b 10- 20071116530 i =0l x|
[ie & Vew fewch o Bodowwia Jake Help [Cabg [
’ oﬂ d L_} R T ey — | (Chtmums | by m
o 4l Mava leckrawte 5 Fres ADLEUn . o imsiend Msresgs o Mambarn o Wisbbel o O v Melmamd 5 % + Mhiglacs
Messages of the Day

Deep Thoughts - by Jack Handey

Hl digwde v order io peaerstoma el e Bave o fnak ar dhe word 15sn Wirebtad D Bemcaly, 185 made up o P separaie
g - Sk el Tt Wlent do Pl warge mesan P RS @ spaeny, ead et vy g G saeakEng

Quotes From the Famous and the Unknown

Thie weost fikely way for e world 10 be dectraed, Moo expents agred, 19 by aceldent. Thark wlierd vae came i) v Sommatar
prefremonsis We cmvee accadrmls, —Mebhanrel Boronsioin

d G2 95 EE oo Do B e i g

Besides the property and value attributes, the <jsp:setProperty> action supports an
attribute named param, which is used to set properties to the values submitted as request
parameters. We'll look at how you can use this feature in Chapter 8.

66

Chapter 6. Using JavaBeans Components in JSP Pages

6.4.1 Automatic Type Conversions

The beans used in this chapter have properties of the Java type St ring, meaning they have
plain-text values. But as I mentioned in the beginning of this chapter, a bean property can be
of any Java type. As a JSP page author, you typically don't have to worry too much about this,
though, since the container can convert text values to other Java types. It handles the most
common types all by itself, but for more complex types it needs a little help from the Java
programmer who develops the bean class.

When you use the <jsp:setProperty> action, the container takes care automatically of
the conversion from text values to the Java types shown in Table 6-3.

Table 6-3. Conversion of text value to property type

Property type Conversion method
boolean or Boolean Boolean.valueOf (String)
byte or Byte Byte.valueOf (String)
char or Character String.charAt (0)
double or Double Double.valueOf (String)
int or Integer Integer.valueOf (String)
float or Float Float.valueOf (String)
long or Long Long.valueOf (String)
short or Short Short.valueOf (String)
Object new String(String)

For other types, such as a java.util.Date, the JSP specification defines how a Java
programmer can develop a so-called "property editor" to handle the conversion. A property
editor associated with a bean can, for instance, convert a string such as 2002-05-10 to a
Date object that represents this date. How to do so is described in Chapter 20.

The value returned by <jsp:getProperty> or <c:out> is always converted to a
String, no matter what Java type it represents.

67

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

Chapter 7. Using Custom Tag Libraries and the JSP
Standard Tag Library

So far we've covered the JSP basics -- the primary parts of a page and installation and
execution of a page -- and how to use beans to dynamically add content to a page. Before we
start working on real applications, let's turn to another fundamental JSP feature: custom tag
libraries.

Custom tag libraries are, in my opinion, what make JSP so powerful. They make it possible
for page authors to embed pretty much any logic in a page using familiar, HTML-like
elements. In this chapter, we take a close look at what a custom tag library is, how to install
and use it, and what the JSP Standard Tag Library (JSTL) brings to the table.

7.1 What Is a Custom Tag Library?

The JSP standard actions, such as the <jsp:useBean> and <jsp:getProperty> actions
used in Chapter 6, are HTML-like elements for commonly needed functions in a JSP page:
creating beans, accessing bean properties, and invoking other JSP pages. But there's a lot
more you want to do that isn't covered by the standard actions.

To extend the set of action elements a page author can use in the same familiar way, a Java
programmer can develop new actions based on classes defined by JSP specification. Such
actions are called custom actions. A custom action can do pretty much anything: it has access
to all information about the request, it can add content to the response body as well as set
response headers, and it can use any Java API to access external resources such as databases,
LDAP servers, or mail servers. The way the JSP container interacts with a custom action also
makes it possible for a custom action to conditionally process its body and to abort the
processing of the rest of the page. Java programmers on the team can develop custom actions
for application-specific functions to make it easier for page authors to develop the JSP pages.
Some typical examples are shown later in this book.

A custom action is inserted into a page using an HTML-like (actually XML) element. The
attribute values, and sometimes the body, you provide tell the action what to do and the data
to use. In fact, you have already used a custom action; the <c: out> action used in Chapter 5
and Chapter 6. It's part of the JSTL core library, and the JSTL libraries are implemented based
on the same mechanisms as an application-specific custom tag library.

Behind the scenes, a custom action is implemented as a Java class. The name of the class and
other information the container needs to invoke it are specified in a file called a Tag Library
Descriptor (TLD). A custom tag library is a simply a collection of the TLD and all class files
for a related set of custom actions. In most cases, the TLD and all classes are packaged in a
JAR file to make it easy to install.

68

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

Brief Custom Action Introduction for Java
Programmers

I explain in detail how to develop custom actions in Chapter 20, Chapter 21, and
Chapter 22. But if you're a programmer, I know you're curious, so here's a taste off
what goes on behind the scene.

A Java class that's called a tag handler implements the custom action behavior. The
tag handler class must implement the javax.servlet.jsp.tagext.Tag
interface (or a subinterface) directly or by extending a support class defined by the
JSP specification. This is the tag handler for the custom action used in this chapter:

package com.ora.jsp.tags.motd;

import java.io.*;
import javax.servlet.jsp.*;
import javax.servlet.]jsp.tagext.*;
import com.ora.jsp.beans.motd.*;
public class MixedMessageTag extends TagSupport {
private MixedMessageBean mmb =
new MixedMessageBean () ;

// Attributes
private String category;

public void setCategory(String category) {
this.category = category;

}

public int doEndTag() {
mmb .setCategory (category) ;
JspWriter out = pageContext.getOut().
try {
out.println (mmb.getMessage ());

}
catch (IOException e) {}
return EVAL PAGE;

For each attribute supported by the custom action, the tag handler must implement
a bean-style setter method, such as the setCategory () method in this example.
The container calls methods defined by the Tag interface, such as
the doEndTag () method, to let the tag handler do its thing.

So why is it called a custom tag library if it's a collection of custom actions? Using formal
XML terminology, one or more tags (e.g., an opening tag and a closing tag) represent one
element (the combination of the tags and possibly a body), but the word "tag" is commonly
used to refer to both tags and elements because it's easier to say and shorter to type. Hence,
the representation of a custom action (the functionality) in a JSP page is really called a custom
action element. But that's just way too many words for most of us to say over and over again.
Replacing element with tag doesn't help much, so we cut it down to the bare bones and use
custom tag for both the functional entity and its representation in a page. When the JSP
specification was written, no one objected to this sloppy language, so now we're stuck with
custom tag libraries containing custom actions. I try to stick to the terms custom action and

69

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

custom action element in this book, but if I slip, be aware that custom action, custom action
element, and custom tag mean the same thing.

7.2 Installing a Custom Tag Library

Installing a custom tag library is very easy: just place the JAR file for the library in the WEB-
INF/Iib directory for the web application. If you look in the WEB-INF/Iib directory for the
book examples application, you see a JAR file named orataglib 2 0. jar; that's the custom tag
library for all custom actions used in this book.

7.3 Declaring a Custom Tag Library

As you know by now, a JSP page contains a mixture of JSP elements and template text, in
which the template text can be HTML or XML elements. The JSP container needs to figure
out which is which. It's easy for it to recognize the standard JSP elements (because they all
use the jsp namespace prefix), but it needs some help to find which elements represent
custom actions. That's where the tag library declaration comes into play.

Example 7-1 shows a page that uses a custom action from a custom tag library.

Example 7-1. Custom tag library declaration (message.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="ora" uri="orataglib" %>
<html>
<head>
<title>Messages of the Day</title>
</head>
<body bgcolor="white">
<hl>Messages of the Day</hl>
<h2>Deep Thoughts - by Jack Handey</h2>
<i>
<ora:motd category="thoughts" />
</i>
<h2>Quotes From the Famous and the Unknown</h2>
<i>
<ora:motd category="quotes" />
</i>
</body>
</html>

This page displays messages from the same collections as the examples in Chapter 6. The
second directive in Example 7-1 is a taglib directive, which is used to declare a custom tag
library. Now, let's see what this really means. In order for the JSP container to use actions
from a tag library, it must be able to do two things: recognize that an element represents a
custom action from a specific library and find the Java class that implements the custom
action logic.

The first requirement -- figuring out which library an action belongs to -- is satisfied by the
taglib directive's prefix attribute; all elements in the page that use the specified prefix
belong to this custom tag library. A custom tag library defines a default prefix, used in the
library's documentation and possibly by page-authoring tools that insert custom action
elements in a page. You can, however, use any prefix you like except jsp, jspx, java,

70

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

javax, servlet, sun, or sunw (those are reserved by the JSP specification). The prefix I
use for all custom actions in this book is ora, short for "O'Reilly & Associates, Inc."

The uri attribute satisfies the second requirement; finding the class for each custom action.
The attribute contains a string the container uses to locate the TLD for the library, where it
finds the Java class names for all actions in the library. The value can identify the TLD file in
a number of ways, but if you use a JSP 1.2 container, there's really just one way that you need
to care about: the default URI for the library. The default URI should be part of the
documentation for the library. It's orataglib for the custom tag library described in this
book.

When the web application is started, the container scans through the WEB-INF directory
structure for files with .#/d extensions (the mandatory extension for a TLD file) and all JAR
files containing files with .¢/d extensions in their META-INF directory. In other words, the
container locates all TLD files. For each TLD, the container gets the library's default URI
from the TLD and creates a map from the URI to the TLD that contains it. In your JSP page,
you just have to use a taglib directive with a uri attribute value that matches the default
URI.

For this to work in an environment where custom tag libraries can come from multiple
vendors as well as from inhouse staff, the default URI value must be a globally unique string.
A common convention is to use an HTTP URL, such as http://ora.com/jsptags. This
is one way to be reasonably sure that the value is unique, and it's the choice made for all JSTL
tag library URIs. Note that the URL doesn't have to refer to an existing web page; it's just an
identifier, and the container doesn't try to access it over the Internet. Others prefer a shorter
string, such as orataglib or com.ora.jsptags. This works equally well as long as the
strings are unique in the application.

With the URI and the prefix for the library defined, the container has all it needs to find the
class that implements the custom action's behavior. As shown in Figure 7-1, when the
container finds an element with a prefix matching a prefix defined by a taglib directive, it
uses the uri attribute value to locate the TLD. In the TLD, it finds a mapping between the
action element name and the class file.

71

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

Figure 7-1. Relation between the taglib directive, the TLD, and the tag handler class

...

ISP page i TLO file
<% taglib prefix="ora” uri:"urata'glib"i;:r <ta§11b.&
i . 4 Lt
'e e <urirorataglibe/uris
I _I_I.-"'E-u- --- passraserrame s E 3 {tag)
¢orammotd category="thoughts" /s ¢namesmatds S mames
Pt ctag-class»

com.ora. jsp.tags.MotdTag
¢/tag-class:
</tag>
<ftaglibe

MotdTag.dass

7.3.1 Identifying a Custom Tag Library in a JSP 1.1 Container

Prior to JSP 1.2, the container didn't locate custom tag libraries automatically. If you're stuck
with a container that doesn't yet support JSP 1.2, you must tell it exactly where to find the
TLD.

The first approach you can use is to specify a symbolic name as the uri attribute value, just
as in JSP 1.2. But in addition, you must define the mapping from the symbolic name to the
location of the library in the deployment descriptor for the application (WEB-INF/web.xml):

<web-app>
<taglib>
<taglib-uri>
orataglib
</taglib-uri>
<taglib-location>
/WEB-INF/lib/orataglib 2 0.jar
</taglib-location>
</taglib>

</&ég—app>
The <taglib-uri> element contains the symbolic name, and the <taglib-location>

element contains the path to the tag library JAR file or to the TLD file itself in case the library
isn't packaged in a JAR file.

If the uri attribute value doesn't match a symbolic name defined in the web.xm! file, the
container assumes it is a file path:

<%@ taglib uri="/WEB-INF/lib/orataglib 2 0.jar" prefix="ora" %>

If the path starts with a slash, it's interpreted as a context-relative path (the path to the file
from the root of the application installation directory), otherwise as a path relative to the JSP
page. The file can be either the TLD file itself or a JAR file that includes the TLD file as
META-INF/taglib.tld.

72

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

These two approaches work in JSP 1.2 container as well, but there's rarely a reason to use
them because the auto-discovery feature makes life so much easier.

7.4 Using Actions from a Tag Library

The custom action described in Table 7-1 does exactly the same thing as the second bean used
in Chapter 6: it adds a message from a specified category to a page.

Table 7-1. Attributes for <ora:motd>

Attribute Java Dynamic value

name type accepted Description

Mandatory. The message category, -either

category String [No
thoughts or quotes.

This custom action has one mandatory attribute named category, used to select the type of
message you want. Let's get back to the "Java type" and "Dynamic value accepted" columns
at the end of this chapter.

Example 7-2 shows the message.jsp page again, now with the custom action elements
highlighted.

Example 7-2. Custom action elements (message.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>
<head>
<title>Messages of the Day</title>
</head>
<body bgcolor="white">
<hl>Messages of the Day</hl>
<h2>Deep Thoughts - by Jack Handey</h2>
<i>
<ora:motd category="thoughts" />
</i>
<h2>Quotes From the Famous and the Unknown</h2>
<i>
<ora:motd category="quotes" />
</i>
</body>
</html>

First note how the <ora:motd> element name prefix matches the prefix assigned to the
custom tag library by the taglib directive. The syntax for a custom action element is the
same as for standard actions: an opening tag, possibly with attributes, a body, and a closing
tag; or just one tag ending with /> if no body is used (as in Example 7-2). Standard actions,
JSTL actions and custom actions; they are all JSP action elements and are used in exactly the
same way.

The first occurrence of the custom action sets the category attribute to thoughts and the
second one to quotes. The <ora:motd> action ("motd" is short for Message Of Today)

73

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

adds a message from the specified category to the page, resulting in the response shown in
Figure 7-2.

Figure 7-2. Output from the message.jsp page

7 Mhesdages of the D - Magils Beild 10- 20001176831 55' =10 =}
fie [Yew fewch 0o Bodnaks Jmks Heln Debg QA
! i] = J J B hinp i ol AL Dok o7 fremrnane] L Sme o
x *]
9 Move |_Ieskrawte o Fres AL L Un « Imaiwrd Msesgs o Mamban L Weblsl o Corracioms . Nzdsamal - Swrastliposls . Wkigisce

Messages of the Day

Deep Thoughts - by Jack Handey

W demdl do soaff al dhe bl af dhe awcremis Fur we can'd soou¥ ol thewr porsonaliy, bo thar fces, and Shis o5 wlal amess me.
Quotes From the Famous and the Unknown

A computer fnir wou maks mctabes faster than any ctier Snvention iy e history with phe posmbile srcaptian of hondmns
e togadle. 0B Medrlar

Editing JSP Pages with an XML Editor

By now it should be clear that all JSP action elements follow the XML notation, so
an XML-syntax aware editor seems like a tool that could make your life easier, with
features such as automatic indentation, color-coding of elements, and even attribute
selection lists for standard HTML and XHTML elements. The only thing that spoils
this is that the JSP directive elements don't follow XML syntax, but there's an easy
workaround that works for most XML editors.

A JSP container recognizes JSP elements even within XML/HTML comments,
while an XML editor typically ignores the comment contents. So the workaround is
simply to place the JSP directives within comment delimiters:

<l--
<%@ page contentType="text/html" %>
<%@ taglib prefix="ora" uri="orataglib" %>
-—>
<html>
<head>
<title>Messages of the Day</title>

7.4.1 Setting Action Attribute Values

Let's talk about the "Java type" and "Dynamic value accepted" column values in Table 7-1.
The category attribute value for the <ora:motd> action has the value String in the "Java
type" column. String is the Java type for a text value. Action attributes can be of any Java
type, the same as the bean properties discussed in Chapter 6. Say, for instance, that the
<ora:motd> action had another attribute for setting the number of messages to return. It'd
make sense for this attribute to be of type int (a whole number). The container treats
attribute values the same as bean properties and automatically converts text values to numeric
and Boolean values, using the same conversion methods. The same as for a bean, a Java
programmer can also link a property editor to a custom action to convert text values to more
complex data structures.

74

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

A custom action attribute may also accept a JSTL Expression Language (EL) expression as
well as a static text value. The value in the "Dynamic Value Accepted" column tells if it does,
and as you can see in Table 7-1, the category attribute for the <ora:motd> action doesn't
accept an EL expression. Support for EL expressions isn't a given, because it requires special
code in the custom action class in JSP 1.2. How to add this feature to a JSP 1.2 custom action
is described in Chapter 22.

7.4.2 The JSP Standard Tag Library

As I mentioned earlier, the JSTL libraries are implemented based on the same mechanisms as
an application-specific custom tag library. The only thing that makes JSTL special is that the
functionality and syntax for the JSTL actions are defined by a formal specification, created by
the Java Community Process just as the JSP specification itself. This allows vendors to offer
implementations of the JSTL actions that are optimized for their JSP container.

JSTL actually consists of four different tag libraries, which minimizes name collisions among
actions in different categories. Table 7-2 shows the default URIs and recommended prefixes
for all JSTL libraries.

Table 7-2. URI for the RT JSTL libraries

Library URI Prefix
Core http://java.sun.com/jstl/core c
XML processing http://java.sun.com/jstl/xml x
[18N formatting http://java.sun.com/jstl/fmt fmt
Database access http://java.sun.com/jstl/sql sql

As I write this, the JSTL specification has just been finalized. Over time, it's expected that
JSTL will be bundled with all web containers, but until this happens, you have to install the
JSTL Reference Implementation (RI) developed by the Apache Taglibs open source project.
It's included with the book example application and consists of the following JAR files in the
webapps/ora/WEB-INF/lib directory:

File Description
‘ W3C DOM classes, used by the JSTL XML library implementation. Part off
dom. jar
JAXP 1.2.
Jaxen: Java XPath Engine classes, used by the JSTL XML library

jaxen—-full.jar |[. .
implementation.

Java API for XML Processing (JAXP) 1.2 specification classes, used by the
JSTL XML library implementation.

JDBC 2.0 Optional Package specification interfaces, used by the JSTL SQL

Jjaxp-api.jar

jdbc2 0- library implementation. Also bundled with Java 2 SDK 1.4 as well as with
stdext.jar Tomcat 4, independent of SDK version; it can be removed when using one
of these environments.
jstl.jar JSTL specification classes and interfaces.
sax.jar XML.org SAX classes, used by the JSTL XML library implementation. Part
' of JAXP 1.2.

saxpath.jar SAXPath classes, used by the JSTL XML library implementation.

75

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

The reference implementation for all JSTL classes and interfaces, developed
by the Apache Taglibs project. This is the main JAR file for the JSTL RI.

Apache Xalan XSLT processor, used by the XML JSTL library
implementation.

standard. jar

xalan.jar

xercesImpl.jar |Apache Xerces XML parser used by the XML JSTL library implementation.

You can install JSTL 1.0 by copying these JAR files to the WEB-INF/Iib directory for your
web application, but to make sure you get the most up-to-date version, I recommend you get
them from the Jakarta Taglibs project:

http://jakarta.apache.org/taglibs/doc/standard-doc/intro.html

To use a JSTL library in your JSP pages, just declare the library you need and use the actions
just as any other custom action:

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>
1 + 2 4+ 3 = <c:out value="${1 + 2 + 3}" />

</body>
</html>

This book demonstrates the use of all JSTL actions, so you'll see plenty of other examples
later.

7.4.2.1 The JSTL Expression Language

As you've already seen, JSTL defines a simple Expression Language for setting action
attributes to dynamic values evaluated at runtime. Prior to the release of JSTL, dynamic
attribute values could be assigned only by Java expressions. This has been a common source
of confusing syntax errors over the years, so the EL was designed with simple syntax and a
forgiving nature to help page authors with this common task. It's important to note, though,
that the EL is currently part of the JSTL specification, not the JSP specification. This means
that EL expressions can be used only for actions that have been specifically developed to
support EL values. This is true for all JSTL actions, of course, and some custom actions, but
none of the standard JSP actions support EL values. It's expected that the EL definition will
be incorporated in the next JSP specification version, making its use valid even for standard
actions and all custom actions.

As you may recall from Chapter 5, an EL expression starts with the $ { delimiter (a dollar sign
plus a left curly brace) and ends with } (a right curly brace). EL expressions and static text
can also be combined, setting the attribute to the result of the expressions concatenated with
the text:

<c:out value="The result of 1 + 2 + 3 is ${1 + 2 + 3}" />

76

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

The resulting string is converted to the attribute's Java type as described earlier, if needed.

As in JavaScript, the EL supports literals numbers (e.g., 1 and 0.98), Booleans (true and
false), strings ("enclosed by double quotes" or 'enclosed by single quotes'), and the keyword
null to represent the absence of a value.

You probably recognize the supported operators, shown in Table 7-3, since they are the same
as those supported by most languages.

Table 7-3. Expression Language operators

Operator |Operation performed

Access a bean property or Map entry

[Access an array or List element

() Group a subexpression to change the evaluation order

’ Addition

- Subtraction or negation of a value

* Multiplication

/ ordiv |Division

% ormod |Modulo (remainder)

==or eq |Test for equality

'=or ne |[Test for inequality

<orlt |Test for less than

>or gt |[Test for greater than

<=or le |[Test for less than or equal

>=or gt [Test for greater than or equal
&& or and|Test for logical AND

| | oror |[Test for logical OR

! or not |Unary Boolean complement

empty |Test for empty variable values (null or an empty String, array, Map, or List)

An EL expression can also contain variables. Variables are named references to data (objects),
created by the application or made available implicitly by the EL.

Application-specific variables can be created in many ways, for instance using the
<jsp:useBean> action as shown in Chapter 6. They can also be created by custom actions
or be passed to the JSP page by a servlet. Every object that is available in one of the JSP
scopes, discussed in Chapter 10, can be used as an EL variable.

A set of EL implicit variables, listed in Table 7-4, provides access to all information about a
request and other generic information.

77

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

Table 7-4. Implicit EL variables

Variable name [Description

pageScope A collection of all page scope variables (a java.util.Map)

requestScope A collection of all request scope variables (a java.util.Map)

sessionScope A collection of all session scope variables (a java.util.Map)

applicationscope|A collection of all application scope variables (a java.util.Map)

- A collection of all request parameter values, as a single String value per
parameter (a java.util.Map)

e lues A collection of all request parameter values, as a String array per
parameter (a java.util.Map)

emder A collection of all request header values, as a single String value per
header (a java.util.Map)

e alues A collection of all request header values, as a String array per header (a
java.util.Map)

i A collection of all request cookie values, as a single
javax.servlet.http.Cookie value per cookie (a java.util.Map)

R A collection of all application initialization parameter values, as a single
String value per value(a java.util.Map)

ageContext An 'ir'lstance of thg javax.servlet.jsp.PageContext class,
providing access to various request data

Don't worry about how the implicit variables are used right now; the following chapters
provide examples that will make all the details clear to you. To give you a taste of how you
can use them, though, here's a <c:out> action with an EL expression that use the implicit
param variable to read the value of a request parameter named userName:

<c:out value="${param.userName}" />

The property accessor operator (a dot) tells the EL to look for the named property (the
parameter name in this case) in the specified bean or collection. If the property name contains
special characters, it has to be quoted, and the array accessor operator must be used instead:

<c:out value="${param|['user-name']}" />

A variable is always of a specific Java data type, and the same is true for action attributes and
bean properties. The EL operators also depend on type information. The EL takes care of type
conversions in "the expected way," however, so you rarely have to worry about it. For
instance, if you add a number and a string, the EL tries to convert the string to a number and
perform the addition. Appendix C contains all details about the conversion rules.

7.4.3 Using Beans or Custom Actions
The example used in this chapter shows that a custom action can provide the same

functionality as a bean. In Chapter 6, we created a MixedMessageBean, set its category
attribute, and retrieved the value of its me ssage property to the page:

78

Chapter 7. Using Custom Tag Libraries and the JSP Standard Tag Library

<jsp:useBean id="msg"
class="com.ora.jsp.beans.motd.MixedMessageBean" />

—_n —_n

<jsp:setProperty name="msg" property="category"
value="thoughts" />

<jsp:getProperty name="msg" property="message" />

In this chapter we use a custom action to accomplish exactly the same result:

<ora:motd category="thoughts" />

This raises the question of when it's better to use one or the other of these two components.
As is often the case in software development, there's no rule applicable to all cases; in other
words, we are left with "it depends." My rule of thumb is that a bean is a great carrier of
information, and a custom action is great for processing information. Custom actions can use
beans as input and output. For instance, an action can save the properties of a bean in a
database, or get information from a database and make it available to the page as a bean. In
Chapter 8, I will show how a bean can also capture and validate user input in a very powerful
way.

Some beans do more than carry information; they encapsulate functionality intended for use
in many different environments, such as in applets, servlets, and JSP pages. In a case like this,
a custom action can internally use the bean, providing a JSP-specific adapter for the bean to
make it easier to use by a page author. This is, in fact, exactly what the <ora :motd> action
does; internally it uses the bean from Chapter 6 to produce the message.

You now have a lot of knowledge under your belt: how to write and install a JSP page, how to
use directive elements, action elements of all kinds (standard, custom, and JSTL actions),
what a bean is and how it can be used in JSP, and you have a rough idea about of what
the JSTL EL is all about. We can now move on and see how to use JSP and JSTL to solve
some real problems, starting with how to deal with user input in the next chapter.

79

Chapter 8. Processing Input and Output

Chapter 8. Processing Input and Output

User input is a necessity in modern web pages. Most dynamic web sites generate pages based
on user input submitted through an HTML form. Unfortunately, users seldom enter
information in exactly the format you need, so before you can use such input, you need to
validate it to make sure it's usable.

And it's not only the input format that's important. Web browsers are also picky about the
format of the HTML you send them. For instance, when you generate an HTML form with
values taken from a database, a name such as O'Reilly can cause problems. The single quote
character after the O can fool the browser into believing it's at the end of the string, so you
end up with just an O in your form.

In this chapter, we look at how you can use either JSTL actions or beans to access and
validate user input. We also look at how special characters in the output must be treated so
they don't confuse the browser.

8.1 Reading Request Parameter Values

The HTML specification defines a set of elements for presenting a form with fields in which
the user can enter text or select among predefined choices. I'm sure you have encountered
these countless times -- to tell a vendor about yourself when downloading demo software, to
specify what you're looking for on a search engine site, or to select the toppings when you
order a pizza online. But you may not be familiar with what's going on behind the scene when
you fill out the form and click Submit. Example 8-1 shows an HTML page that contains the
most commonly used HTML form elements.

Example 8-1. HTML form elements

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<form action="process.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td>
<input type="text" name="userName'">
</td>
</tr>
<tr>
<td>Birth Date:</td>
<td>
<input type="text" name="birthDate">
</td>
<td>(Use format yyyy-mm-dd)</td>
</tr>
<tr>
<td>Email Address:</td>
<td>
<input type="text" name="emailAddr">
</td>
<td>(Use format name@company.com)</td>
</tr>

80

Chapter 8. Processing Input and Output

<tr>
<td>Gender:</td>
<td>
<input type="radio" name="gender" value="m" checked>Male

<input type="radio" name="gender" wvalue="f">Female
</td>
</tr>
<tr>
<td>Lucky number:</td>
<td>
<input type="text" name="luckyNumber">
</td>
<td> (A number between 1 and 100)</td>
</tr>
<tr>
<td>Favorite Foods:</td>
<td>
<input type="checkbox" name="food" value="z">Pizza

<input type="checkbox" name="food" value="p">Pasta

<input type="checkbox" name="food" wvalue="c">Chinese
</td>
</tr>
<tr>
<td colspan=2>
<input type="submit" value="Send Data">
</td>
</tr>
</table>
</form>
</body>
</html>

This form could be the frontend to a newsletter subscription site, for instance. In order to send
the users information that might interest them, it asks for the birth date, gender, lucky number,
and food preferences, along with the full name and email address, for each person that signs
up for the service.

The HTML <form> element encloses all the other form elements. Its action attribute
contains the URI for the web server resource (for instance, a JSP page, as in this example) that
the form should be submitted to. The method attribute tells the browser which HTTP method
to use when submitting the form. Recall from Chapter 2 that the GET method is intended for
requests that just retrieve information, while the POST method is intended for requests that
cause irreversible actions, such as saving the form values in a database.

The form in Example 8-1 contains a number of HTML <input> elements. Each element has
a type attribute. The type attribute tells the browser which type of input control to render:
text, password, checkbox, radio, hidden, file, submit, reset, image, or
button. In this example I use only text (a regular text input field), radio (a radio button,
typically used for mutually exclusive choices), checkbox (for multiple optional choices),
and submit (a button for submitting the form). Some of the other types are used in other
examples in this book, but if you need more detailed descriptions you may want read a book
specifically about HTML, such HTML Pocket Reference by Jennifer Niederst (O'Reilly) or
HTML & XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly).

When the user clicks the Submit button, the browser sends a request to the web-server
resource specified by the <form> element's action attribute, using the method specified by
the method attribute. All values the user has entered in the text fields and chosen from radio
buttons, checkboxes, or select lists, are sent as HTTP request parameters with the request.

81

Chapter 8. Processing Input and Output

How the request parameters are sent depends on the request method. For a GET request, the
parameters are sent as a query string appended to the URL; for a POST request, they are sent
in the request body. No matter how they are sent, each parameter is represented by a
name/value pair. The name is the name assigned to the form element using the name attribute,
and the value is either the value entered by the user (for text fields) or the value specified by
the element's value attribute. Hence, when the form in Example 8-1 is submitted, the request
contains parameters named userName, birthDate, emailAddr, and luckyNumber
containing the text entered by the user (or an empty string if no text was entered) and one
parameter named gender with the value m or £ depending on which radio button the user
selected.

The checkbox controls at the end of Example 8-1 have a slightly more complex behavior.
Note that all checkbox <input> elements have the same name: food. This is how you tell
that they belong to the same category. If the user checks off more than one checkbox, the
browser sends a request with multiple request parameters named food; one for each value. If
the user doesn't check off any checkbox (someone on a diet, maybe, or with a more eclectic
taste than I), the browser doesn't send a food parameter at all. The HTML <select>
element (not shown in this example) works the same way when specified to allow multiple
choices.

Now when you've seen how the browser deals with form fields, let's move on to how to access
the form data in a JSP page using either JSTL actions or a bean.

8.1.1 Accessing Parameter Values with JSTL Actions

Example 8-2 shows a page with the same form as in Example 8-1 but with the form's action
attribute pointing back to the JSP page that contains it and JSTL actions adding the submitted
values to the response.

Example 8-2. Accessing parameters with JSTL (input_jstl.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<form action="input jstl.jsp" method="post">
<table>
<tr>
<td>Name:</td>
<td>
<input type="text" name="userName">
</td>
</tr>
<tr>
<td>Birth Date:</td>
<td>
<input type="text" name="birthDate">
</td>
<td> (Use format yyyy-mm-dd)</td>
</tr>

82

Chapter 8. Processing Input and Output

<tr>
<td>Email Address:</td>
<td>
<input type="text" name="emailAddr">
</td>
<td>(Use format name@company.com)</td>
</tr>
<tr>
<td>Gender:</td>
<td>
<input type="radio" name="gender" value="m" checked>Male

<input type="radio" name="gender" value="f">Female
</td>
</tr>
<tr>
<td>Lucky number:</td>
<td>
<input type="text" name="luckyNumber">
</td>
<td> (A number between 1 and 100)</td>
</tr>
<tr>
<td>Favorite Foods:</td>
<td>
<input type="checkbox" name="food" value="z">Pizza

<input type="checkbox" name="food" value="p">Pasta

<input type="checkbox" name="food" value="c">Chinese
</td>
</tr>
<tr>
<td colspan=2>
<input type="submit" value="Send Data">
</td>
</tr>
</table>
</form>

You entered:

Name: <c:out value="${param.userName}" />

Birth Date: <c:out value="${param.birthDate}" />

Email Address: <c:out value="${param.emailAddr}" />

Gender: <c:out value="${param.gender}" />

Lucky Number: <c:out value="${param.luckyNumber}" />

Favorite Food:
<c:forEach items="${paramValues.food}" var="current">
<c:out value="${current}" />s
</c:forEach>
</body>
</html>

If you load the page in a browser, fill out the form and submit it, you end up with a result that
looks something like Figure 8-1.

83

Chapter 8. Processing Input and Output

Figure 8-1. Input form

~ Uam Inlu Eniey Foim - Moolla [Budd 1D: 2000122108] =
Ei= B Yew Semch Go Pookmerks lasks Heln Detun Q4
0.0 O O |Errmme == <o
Hame
Eaths Dvie: (e Tormak Fyvy-nom-dd)
Emaul Address {Use format mameifcompany. com)
Cancer ¥ Ml
Female
Lucky aumber (A ok babween 1 and 1003
Pz
Favcate Foods Fasta

Cleness

Send Dt

You entered

Mame: Hang Begsten

Errth Diate: Ml

Esnad Address: hansi@gaficesofware com
Geoder-m

Locky Mannker 13

Favomte Fond:z p &

O & O El @ | Docurent Dona 137 tass] i

Let's look at how the submitted values end up in the response. All form field values except the
Favorite Foods checkbox values, are added using a JSTL <c: out> action (Table 8-1) with an
EL expression that retrieves the request parameter value, for instance:

Name: <c:out value="${param.userName}" />

Recall from Chapter 7 that param is an implicit EL variable that represents a collection (a
java.util.Map) of all request parameters sent to the page. To get the value of a specific
variable, you simply specify the name of the parameter, separated from the collection name
with a dot.

Table 8-1. Attributes for JSTL <c:out>

Attribute |Java Dynamic value o g
Description

name type accepted

value @EZ Yes Mandatory. The value to add to the response.
Optional. true if special characters in the value

escapexml |boolean |Yes should be converted to character entity codes. Default
Is true.

. Any Yes Optional. The value to use if the value attribute is

type null. Can also be defined by the body.

As described earlier, when a user checks off multiple checkboxes that share the same name,
the request contains multiple parameters with the same name. If none is checked, the request
doesn't contain the corresponding parameter at all. To display the choices the user made, we
need to get all parameter values and a way to deal with them one at a time. The implicit
paramValues variable and the JSTL <c:forEach> (Table 8-2) action satisfy these
requirements.

84

Chapter 8. Processing Input and Output

Table 8-2. Attributes for JSTL <c:forEach>

. Dynamic
Attribute y o
Java type value Description
name
accepted
java.util.Collection, Optional. .The collection of]
: . values to iterate over. If the
java.util.Iterator, . . .
. . . . value is null, no iteration is
items java.util.Enumeration, Yes

performed. If not specified,
the begin and end attributes
must be specified.

Jjava.util.Map, String,
Object [] or array of primitive types

Optional. The name of the
var String No variable to hold the value of]
the current element.

Optional. The name of the
varStatus |String No variable to hold a
LoopTagStatus object.

Optional. The first index,

begi int

o B Yes 0-based.

o e Ves Optional. The last index,
0-based.

ctep e Yes Optional. Index increment

per iteration.

The <c: forEach> action is a powerful action that repeatedly processes its body a number of
times, as defined by its attributes. In Example 8-2, only the items attribute is needed. The
items attribute accepts all standard Java collection types, an array, or a string with a list of
comma-separated values. In other words, if a variable represents a collection of values in
some form, chances are <c: forEach> can handle it. The var attribute specifies the name of
a variable to hold the current element of the collection. The variable is available only within
the body of the action element.

The implicit paramValues variable is a collection of request parameters sent to the page,
with each parameter represented by an array of values (rather than the single value per
parameter held by the param variable). Combining the <c:forEach> action and the
paramValues variable makes it easy to loop through all submitted Favorite Food choices
and add each one to the response:

Favorite Food:
<c:forEach items="${paramValues.food}" var="current">
<c:out value="${current}" />s
</c:forEach>

The <c:forEach> action iterates over the array values, and the nested <c:out> action
adds each value to the response. If no choice was made (the EL expression doesn't return

anything), the <c: forEach> action simply does nothing.

Besides the items and var attributes used in Example 8-2, <c: forEach> also lets you
define where in the collection to start and stop the iteration (begin and end) and if all or just

85

Chapter 8. Processing Input and Output

some elements should be processed (step). These attributes can also be used without a
collection to process the body a fixed number of times:

<c:forEach begin="1" end="4">

</forEach>

The varStatus attribute can be used to name a variable that holds a bean with iteration
status details. You can use it when something needs to be done only on the first or last pass
through the body, or for even and odd indexes, etc. The iteration status bean
(Javax.servlet.jsp.jstl.core.LoopTagStatus)is described in Appendix B.

8.1.2 Accessing Other Request Data

The param and paramValues variables give you access to request parameters. But there's a
lot of information passed with a request besides parameters. Header values can be accessed
through the header and headerValues variables, and cookies through the cookie
variable. Other request information is available through the EL as properties of the object that
represents the request itself, accessed through the implicit pageContext variable's
request property. The request property is an instance of a class named
javax.servlet.http.HttpServletRequest, and Table 8-3 shows its properties for
information that isn't available through the other implicit objects (except a few that aren't
appropriate for use in a JSP page).

Table 8-3. Properties for javax.servlet.http.HttpServietRequest

Property name |Java type Access|Description
. The name of the authentication
authType String Read .
scheme protecting the request
characterEncoding|String Read The ,requeSt b9dy character
encoding, or null if unknown
Comtentiength . Read The request body length, or -1 if]
unknown
contentType String Read |[The request body MIME type
contextPath String Read |The context path for the request
cookies javax.servlet.http.Cookie[]|Read The cookies received with the
request
locale java.util.Locale Read |The client's preferred locale
et en java.util.Enumeration Read A list of all client locales in order
of preference
ethod Ctring Read The request method (e.g., GET,
POST).
The protocol name and version
tocol Stri R ’
preneer o cad e.g., HTTP/1.1
remoteAddr String Read |The client's IP address
otenot ctring Read The client's hostname or IP address
if not known

86

Chapter 8. Processing Input and Output

The username used to make the
remoteUser String Read |request if the page is protected,
otherwise null
LequestURI String Read The reguest URI, e.g.,
/app/page.jsp
requestURL StringBuffer Read The request URL’ .8
http.//server/app/page.jsp
scheme String Read |The scheme, e.g., http or https.
erletbaih String Read The context-relatw’e path for the
request, €.g., /page.jsp.
. The name of the server the request
serverName String Rﬁad
was sent to
serverPort int Read |The port the request was sent to
e oolenn Read |ETU€ if the request was made over
a secure channel (e.g., SSL).
The Principal representing the
userPrincipal java.security.Principal Read |user making the request if the page
is protected, otherwise null

Example 8-3 shows a page that displays some of the available information.

Example 8-3. Request information (reqginfo.jsp)

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>

<title>Request Info</title>

</head>

<body bgcolor="white">

The following information was received:

Request Method:

<c:out value="${pageContext.
Request Protocol:

<c:out value="${pageContext.
Context Path:

<c:out value="${pageContext.
Servlet Path:

<c:out value="§${pageContext.
Request URI:

<c:out value="§${pageContext.
Request URL:

<c:out value="§${pageContext.
Server Name:

<c:out value="§${pageContext.
Server Port:

<c:out value="§${pageContext.
Remote Address:

<c:out value="§${pageContext.
Remote Host:

<c:out value="§${pageContext.
Secure:

<c:out value="§${pageContext.
Cookies:

request.
request.
request.
request.
request.
request.
request.
request.
request.
request.

request.

87

method}" />
protocol}" />
contextPath}" />
servletPath}" />
requestURI}" />
requestURL}" />
serverName}" />
serverPort}" />
remoteAddr}" />
remoteHost}" />
secure}" />

Chapter 8. Processing Input and Output

<c:forEach items="${pageContext.request.cookies}" var="c">
 <c:out value="${c.name}" />:
<c:out value="${c.value}" />

</c:forEach>
Headers:

<c:forEach items="${headerValues}" var="h">
 <c:out value="${h.key}" />:
<c:forEach items="${h.value}" var="value">

 <c:out value="${value}" />
</c:forEach>

</c:forEach>

</body>
</html>

The EL expressions used as <c:out> value attribute values get various request object
properties.

Cookie values can be accessed in two ways: through the implicit cookie variable or through
the request object's cookies property. The first way is the easiest to use when you know the
name of the cookie you're looking for; I will show you an example of this in Chapter 12. The
second way is used in Example 8-3, since we don't know the cookie names and want to list all
of them. A <c: forEach> action loops over all cookies received with the request and makes
the current cookie available through a variable named c within its body. A class named
javax.servlet.http.Cookie, with the properties name and value, represents a
cookie. The nested <c:out> actions add the value of these two properties for each cookie to
the response.

Header values can be accessed through the implicit header and headerValues variables.
In Example 8-3, <c:forEach> actions loop over all headers and then over all values for

each header, adding the names and the values to the response.

Figure 8-2 shows a typical response generated by the JSP page in Example 8-3.

88

Chapter 8. Processing Input and Output

Figure 8-2. Request information displayed with JSTL actions

) Hesquest bndi - Mozl [Buisd I 0030100 . =101 x|
Ele E& Yew Sewch Go Bechmals Tahs Help

. l._,;{j o W D [rerereamevreens | [Eusemon] =y

The t=dowmg dnmmatcn was raceped

Baquest Metecd GET

#* Faquest Protocol HTTRL 1

* Comeit Fath fora

& Serviel Path fchilirecnlo wp

w Rwquest TRT foradchBfegels jip
= Bequest TRL: hp Mocalhost:B0 BlderatchBirequado sp
Server Mame: Jocahost

Server Post BOED

Eemote Address: 127.001

Femote Hest localhost

* Seou. false

& Coskies

Rk amin foobar

pasiward fooba
JEESEICOMNID: TAGRS | CXEEHC 4D | MF M AZAF 26 T2 | | |
* Hrapders
ronkie
waer Mame=leabar, password=loabar, [SESS1I0MD=TA GBS COE A4 1 AP A 3G 1D

EnniEEEnn

k-l
@t ept- e ding

amp, deflabe, compress;g=0%
accept

1
i
i
2
:
g
g
i
g
=
2
5
=]
2
H
E
1
i
g
4
i
4
!
3
[

[l

rE=ET

B0 o | Dpcusen Doea 143 16s]]

8.1.3 Capturing Parameter Values Using a Bean

As you may remember from Chapter 6, a bean is often used as a container for data, created by
some server process and used in a JSP page to display the data. But a bean can also be used to
capture user input. The captured data can then be processed by the bean itself, or used as input
to some other server component (e.g., a component that stores the data in a database or picks
an appropriate banner ad to display).

To capture the user input from the example form, I have implemented a bean named
com.ora.jsp.beans.userinfo.UserInfoBean, with the properties described in
Table 8-4.

Table 8-4. Properties for com.ora.jsp.beans.userinfo.UserinfoBean

Propert Java ..
perty Access |Description
name type
Read-
userName String qad The user's full name
write
et hbate String Regd— The user's birth date in the format yyyy-mm-dd (e.g.,
write 2002-01-23)
. . Read- The user's email address in the format
emailAddr String X
write name@company.com
. Read- ,
gender String . The user's gender (m or £)
write
. Read- ,
luckyNumber |String write The user's lucky number (between 1 and 100)
. Read- . . o
food String[] write The user's favorite food (any combination of z, p, and c)

89

Chapter 8. Processing Input and Output

As shown in the "Access" column in Table 8-4, all properties are read-write, meaning that, in
addition to using the bean's properties to generate output, the property values can be set based
on user input.

Example 8-4 shows the last part of a JSP page that uses the bean to capture the user input and
then displays the values using JSTL actions. The part of the page that contains the form isn't
included in Example 8-4 because it's identical to the form part in Example 8-2.

Example 8-4. Capturing parameters with a bean (input_bean.jsp)

<jsp:useBean id="userInfo"
class="com.ora. jsp.beans.userinfo.UserInfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

You entered:

Name: <c:out value="${userInfo.userName}" />

Birth Date: <c:out value="${userInfo.birthDate}" />

Email Address: <c:out value="${userInfo.emailAddr}" />

Gender: <c:out value="${userInfo.gender}" />

Lucky Number: <c:out value="${userInfo.luckyNumber}" />

Favorite Food:
<c:forEach items="${userInfo.food}" var="current">
<c:out value="${current}" />s
</c:forEach>
</body>
</html>

At the top of Example 8-4, a <jsp:useBean> action element creates the bean and
associates it with a name; the id attribute specifies the name for the bean and the class
attribute specifies the fully qualified class name. This is similar to how the action was used to
create the beans in Chapter 6, except that here the body contains a nested
<jsp:setProperty> action element. You must therefore use both an opening tag and a
closing tag (</jsp:useBean>) instead of the empty element shorthand notation
(<jsp:useBean id="..." class="..." />) used in Chapter 6. The body of a
<jsp:useBean> action element is processed only when a new bean is created. In this
example, that's always the case, but as you'll learn in Chapter 10, there are times when the
bean already exists, and the action is needed only to associate the bean with a name.

Now let's take a closer look at the <jsp:setProperty> action. In Chapter 6, this action
sets a bean property to a static value, such as the message category in the message-producing
bean. That's nice, but the real power of this action lies in its ability to set bean properties from
request parameter values. This is how it's used in Example 8-4, enabled by the property
attribute's asterisk (*) value. If you compare the name attribute values for all fields in the
form with the UserInfoBean property names in Table 8-4, you notice that each field name
maps to a property name. With property="*", the <jsp:setProperty> action sets all
bean properties to the value of the corresponding parameters automatically. For this to work,
the field name must match the property name exactly, including case. Since bean property
names always start with a lowercase letter, so must all the field names. Getting the properties
set automatically is great; if you define more properties for your bean, all you have to do to
set them is add new matching fields in the form that invokes the JSP page.

90

Chapter 8. Processing Input and Output

Besides the property and wvalue attributes you have seen so far, the
<jsp:setProperty> action supports one more attribute: param. If you can't use the same
name for the parameters and the property names for some reason, you can use the param
attribute to set a bean property to the value of any request parameter:

<jsp:setProperty
name="userInfo"
property="userName"

—_n

param="someOtherParam"

/>

Here the userName property is set to the value of a request parameter named
someOtherParam.

As in Example 8-2, <c:out> actions are used to add the submitted values to the response.
The only difference is that in Example 8-4, the EL expressions pick up the values captured by
the bean instead of getting the parameter values.

Name: <c:out value="${userInfo.userName}" />

userInfo is the bean variable created by the <jsp:useBean> action. The property name
(userName) is separated from the bean variable name by a dot to tell the EL to get the
property value.

The Favorite Food choices are available through a property named food as an array of
strings. It's processed with the <c: forEach> action, just as in the JSTL example:

Favorite Food:
<c:forEach items="${userInfo.food}" var="current'">
<c:out value="${current}" />
</c:forEach>

8.2 Validating User Input

You should never trust your users, at least not when it comes to entering information in the
format you need. Often, you need to make sure the input is valid before you continue to
process a request. A date, for instance, can be written in many different formats. If you've
traveled to the United States, and you're not a U.S. citizen, you probably have had to fill out
both an I-94 and a customs declaration form to be admitted by an immigration officer. You
may have noticed that on one of the forms you need to write your birth date as yy/mm/dd and
on the other as mm/dd/yy. 1 always get it wrong.

The entry form used in the examples in this chapter has a number of fields that must be
validated: a name must be entered, the birth date must be a valid date, the email address must
at least look like a real mail address (it's basically impossible to verify that it is in fact real),
the gender must be one of m (male) or £ (female), the lucky number must be a number
between 1 and 100, and if any food favorites are selected, each must be one of z (pizza), p
(pasta) or c (Chinese).

Simple input can be validated using the standard JSTL actions, but for more complex
validation rules, a bean is a good choice. We will look at both approaches next. If you use JSP

91

Chapter 8. Processing Input and Output

combined with servlets, the input validation is typically done by the servlet and the JSP pages
are invoked only if the input turns out to be okay. This approach is described in Chapter 18.

8.2.1 Validating User Input Using JSTL Actions

Besides adding validation, let's make the input form example a bit more realistic. Instead of
just echoing the entered values at the end of the page, we use them to set the initial values of
the form fields. This makes it easier for the user to correct the mistakes. For each invalid
value, an error message is also inserted above the incorrect field.

I use a number of JSTL actions that we have not discussed so far and a few tricks to
implement these changes. To make all the new stuff easier to digest, we look at the new page
in pieces. Example 8-5 shows the top part of the form with the validation and initialization of
the Name field.

Example 8-5. Validating the name parameter with JSTL (validate_jstl.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">

<form action="validate jstl.jsp" method="post">
<input type="hidden" name="submitted" wvalue="true">

<table>
<c:if test="${param.submitted && empty param.userName}">
<tr><td></td>

<td colspan="2">
Please enter your Name
</td></tr>
</c:if>
<tr>
<td>Name:</td>
<td>
<input type="text" name="userName"
value="<c:out value="${param.userName}" />">
</td>
</tr>

The first thing to notice in this example is the HTML field of type "hidden", named
submitted with the value t rue. The browser doesn't display a hidden field, but its value is
sent as a regular request parameter when the form is submitted. I use it in this example to
avoid displaying error messages when the page is loaded for the first time, before the user has
had a chance to enter any data. The submitted parameter isn't part of the first request for
the page, but when the user submits the form, the submitted parameter is sent along with
all parameters representing the other HTML fields. Hence, it can be used to test if the
parameters should be validated or not.

The wvalidation of the Name field illustrates how it works. The JSTL <c:if> action,
described in Table 8-5, is used with an EL expression that evaluates to true only if the
submitted parameter has the value true, and the userName parameter is empty. Since
the submitted parameter isn't part of the initial request to load the page, it doesn't have the

92

Chapter 8. Processing Input and Output

value true, causing the EL expression to evaluate to false, and the <c:1if> action's body
to be ignored. After submitting the form, however, the submitted parameter has the value
true, so if the userName parameter contains an empty string (the user didn't enter a value in
the Name field), the body is processed, adding the error message.

To make it easy for the user to correct mistakes, the form fields are initialized with the
submitted values. The <c:out> action with an EL expression that gets the corresponding
parameter value takes care of this.

Table 8-5. Attributes for JSTL <c:if>

Attribute [Java Dynamic value e
Description
name type accepted
- poolean |Yes Mandatory. An expression that evaluates to true or
false.
‘ Optional. The name of the variable to hold the
var string |NoO
Boolean result.
Optional. The scope for the variable, one of page,
scope string |No request, session, or application. page is the
default.

A note about the empty operator seems warranted, because this is an operator you don't find
in most languages. It's included in the EL to avoid having to deal with the difference between
a null value (the absence of a value) and the empty string value ("") because in a web
application, you typically want to treat both cases the same way. Without the empty operator,
you would have to write all tests like the ones in Example 8-5 like this instead:

<c:1f test="${param.submitted &&
(param.userName == null || param.userName == '"')}">

The empty operator is shorthand for the combination of these tests. In addition to empty
strings and null, it also evaluates to true for an empty array, java.util.List, or
java.util.Map. In other words, you can use it to test for empty collections of the most
common types.

Another fairly unique feature in the EL is that you have a choice with regards to the symbols
for the common operators. For instance, instead of using && as the logical AND operator, | |
for logical OR, and ! for logical NOT, you can use and, or, and not. The relational
operators can be written as ==, !=, <, <=, >, and >=, or as eq, ne, 1t, le, gt, and ge,
respectively. Besides catering to different personal preferences, the motivation for this is to
provide a consistent set of operator symbols for use in pure XML documents (as described in
Chapter 16) in which some of the most commonly used symbols can cause problems (e.g., <
and &¢&).

Example 8-6 shows the validation and initialization of the Birth Date and Email Address
fields.

93

Chapter 8. Processing Input and Output

Example 8-6. Validating the birth date and email parameters with JSTL (validate_jstl.jsp)

<c:if test="${param.submitted && empty param.birthDate}">
<tr><td></td>
<td colspan="2">
Please enter your Birth Date
</td></tr>
</c:if>
<tr>
<td>Birth Date:</td>
<td>
<input type="text" name="birthDate"
value="<c:out value="${param.birthDate}" />">

</td>
<td> (Use format yyyy-mm-dd)</td>

</tr>

<c:if test="${param.submitted && empty param.emailAddr}">
<tr><td></td>

<td colspan="2">
Please enter your Email Address
</td></tr>
</c:if>
<tr>
<td>Email Address:</td>
<td>
<input type="text" name="emailAddr"
value="<c:out value="${param.emailAddr}" />">
</td>
<td>(Use format name@company.com)</td>
</tr>

As you can see, the processing for these fields is identical to the pattern used for the Name
field. A <c:1if> action tests if the form is submitted and the parameter corresponding to the
field is empty, and if so, adds an error message. The submitted value of the field is added with
a <c:out> action.

For the Gender field (radio button), the value must be either m (Male) or £ (Female). This
requires a slightly different test condition, as shown in Example 8-7.

Example 8-7. Validating the gender parameter with JSTL (validate_jstl.jsp)

<c:if test="${param.submitted &&
param.gender !'= 'm' && param.gender != 'f'}">
<tr><td></td>
<td colspan="2">
Please select a valid Gender
</td></tr>
</c:if>
<tr>
<td>Gender:</td>
<td>
<c:choose>
<c:when test="${param.gender == 'f'}">
<input type="radio" name="gender" wvalue="m">
Male

<input type="radio" name="gender" value="f" checked>
Female
</c:when>

94

Chapter 8. Processing Input and Output

<c:otherwise>

<input type="radio" name="gender" value="m" checked>
Male

<input type="radio" name="gender" value="f">
Female

</c:otherwise>
</c:choose>
</td>
</tr>

In addition to testing if the form is submitted, we must test if the value is m or £. It's done by
simply adding more subexpressions, combined using the && operator. You can combine as
many subexpressions as you need in this way.

The Gender field isn't represented by a text field but by a

radio button, so another approach is also needed for initializing it with the submitted value. To
make a radio button be displayed as selected, the checked attribute must be added to the
HTML element. The JSTL <c: choose> action helps us with this task.

The <c:choose> action has no attributes; it just groups and controls any number of nested
<c:when> actions and optionally one <c:otherwise> action. These are the only actions
that are accepted within a <c:choose> body. A <c:choose> block is used pick one of a
set of related, mutually exclusive alternatives. The <c:choose> action makes sure that only
the first <c:when> action (Table 8-6) with a test attribute value that evaluates to true is
processed. If no <c:when> action meets its test condition, the <c:otherwise> body is
processed instead. If you're a programmer, you may recognize this as being similar to a switch
statement.

Table 8-6. Attributes for JSTL <c:when>

Attribute Java Dynamic value

name type accepted Description

Mandatory. An expression that evaluates to

test boolean |Yes
true or false.

In Example 8-7, the <c:choose> action contains one <c:when> action that tests if the
gender parameter has the value f, and if so, adds both radio button fields with the one
representing the £ choice as selected. The <c:otherwise> action adds the radio button
fields with the one representing m as selected.

The effect is that the m choice becomes the default, used if the submitted value is invalid. It
may seem redundant to handle invalid values for a parameter representing a radio button, but
it isn't. Even though using a group of radio buttons helps the regular user pick a valid value,
you must guard against requests submitted through other means than the form. It's easy for
someone to submit an HTTP request to your page with any value. For instance, see what
happens if you request the page with a query string like this:

http://localhost:8080/ora/ch8/validate jstl.jsp?submitted=true&gender=x

Since the page checks for valid values even for the radio buttons, the x value for the gender
parameter results in an error message.

95

Chapter 8. Processing Input and Output

Next up is the processing of the Lucky Number field, in which the value must be a number
between 1 and 100. Example 8-8 shows how you can test for this.

Example 8-8. Validating the lucky number parameter with JSTL (validate_jstl.jsp)

<c:if test="${param.submitted &&
(param. luckyNumber < 1 || param.luckyNumber > 100)}">
<tr><td></td>
<td colspan="2">
Please enter a Lucky Number between 1 and 100
</td></tr>
</c:if>
<tr>
<td>Lucky number:</td>
<td>
<input type="text" name="luckyNumber"
value="<c:out value="${param.luckyNumber}" />">
</td>
<td> (A number between 1 and 100)</td>
</tr>

Compared to the test for the Gender field, there's one difference: the subexpressions for less
than 1 or greater than 100 are placed within parenthesis. Parentheses can be used in an EL
expression to override the default rules for in which order subexpressions are evaluated,
known as the operator precedence rules. The EL operator precedence rules say that the s«
operator is evaluated before the | | operator. Without the parentheses around the range check,
the expression is evaluated as "if submitted, and the number is less than 1," and only if that is
false, evaluate "if the number is greater than 100." With the parentheses, it's evaluated as "if
submitted" and if that's true, evaluate "if the number is less than 1 or greater than 100." In
this particular case, the result would be the same, but when you mix && and | | operators, it's
always a good idea to group the subexpressions with parentheses to avoid surprises.

Example 8-9 shows the most complex validation case: the list of food choices. Here the food
parameter may have none or many values, and each value must be one of z (Pizza), p (Pasta),
or ¢ (Chinese).

Example 8-9. Validating the food parameter with JSTL (validate_jstl.jsp)

<c:forEach items="${paramValues.food}" var="current">
<c:choose>

<c:when test="${current == 'z'}">

<c:set var="pizzaSelected" value="true" />
</c:when>
<c:when test="${current == 'p'}">

<c:set var="pastaSelected" value="true" />
</c:when>
<c:when test="${current == 'c'}">

<c:set var="chineseSelected" value="true" />
</c:when>
<c:otherwise>
<c:set var="invalidSelection" wvalue="true" />
</c:otherwise>
</c:choose>
</c:forEach>
<c:if test="${invalidSelection}">
<tr><td></td>
<td colspan="2">
Please select only valid Favorite Foods
</td></tr>
</c:if>

96

Chapter 8. Processing Input and Output

<tr>
<td>Favorite Foods:</td>
<td>
<input type="checkbox" name="food" wvalue="z"
<c:if test="${pizzaSelected}">checked</c:if>>Pizza

<input type="checkbox" name="food" value="p"
<c:if test="${pastaSelected}">checked</c:if>>Pasta

<input type="checkbox" name="food" value="c"
<c:if test="${chineseSelected}">checked</c:if>>Chinese
</td>
</tr>
<tr>
<td colspan="3">
<input type="submit" value="Send Data'">
</td>
</tr>
</table>
</form>
</body>
</html>

The approach I use for this test is to loop through all submitted values (using the
paramValues variable) with <c:forEach>, testing each value with the <c:choose>
action and nested <c:when> and <c:otherwise> actions, setting a "selected" variable to
true for each valid value and an invalidSelection variable to true for an invalid
value. To set the variables, I use the JSTL <c: set> action, described in Table 8-7.

Table 8-7. Attributes for JSTL <c:set>

Attribute Dynamic o
Java type value Description
name
accepted
e Any type Ves Mandatory, unless the body is used to

provide the value. The value to set.

Optional. The name of the variable to hold
var String No the value. If not specified, the target
and property attributes must be used

Optional. The scope for the variable
specified by var, one of page, request,

scope String No .
session, or application. page is the
default.

target A JavaBeans object or] Optional. A Map or a JavaBeans object

java.util.Map with a property specified by property.
property |string Yes Optional. The property name for the object

specified by target that should be set.

Once these test variables are set based on the input, the rest is easy: to decide whether to add
an error message or not, just test if invalidSelection is true; to decide if the checked
attribute should be set for a checkbox, test if the corresponding "selected" variable is true.

8.2.2 Validating User Input Using a Bean

If you think using JSTL to validate input looks complicated, you're right. It works fine for
simple validation, like making sure a value has a value at all (as for the Name field) or that a

97

Chapter 8. Processing Input and Output

parameter has one of a few specific values (as for the Gender choice). But with more complex
validation, such as verifying that a parameter holds an email address or a credit-card number,
or that a value matches a list of valid values held in a database, we can do a lot better with a
bean. In fact, the format of the Birth Date and Email Address fields, and if the Lucky Number
is something else than a number, isn't checked at all in the JSTL validation example. Other
examples in this book will show how you can use custom actions to do more thorough
validation of these types of values, but here we look at how it's done using a bean. Figure 8-3
shows a typical response when some fields have invalid values.

Figure 8-3. Response generated for invalid input

Eie Edt Wae Sewch [o Hookmaks [amks Hep [ebug @4
i i\‘):l o W O [it tanpe 1] [Cubach] Sob
|
Harne Hans Besgeten
Eirti Drate A6 (e faeenak yyyy-men-dd)
Esnail Address hans (et Formnak nafmes(E) Comg-adng. ¢ ofn)
- = MMale
ender N :
ST
Luacky sumber: (101 (A namber berween 1 and 100])
+ Fuxza
Faworite Foods B Fasta
':-.'l.ﬂ'lEﬁE
Sand Date
A &) % B o | Docunei- Bone ({68 secs) I

Since a bean is implemented with Java code and has access to all Java APlIs, it can do any
kind of validation you can dream of. The UserInfoBean used in the previous bean example
also has a number of validation properties, described in Table 8-8. If you're curious about the
bean implementation, it's described in Chapter 19.

Table 8-8. Validation properties for com.ora.jsp.beans.userinfo.UserinfoBean

Java o g

Property name Access|Description
type

userNameValid boolean Read |Is a user name set?

birthDatevalid [|poolean |Read |Is the birth date in the format yyyy-mm-dd?

Is the email address n the format
name@company.com?

emailAddrvalid [|boolean |Read

gendervalid boolean |Read |Isthe gender m or £?

luckyNumbervalidlboolean |Read [Is lucky number between 1 and 100?

foodvalid boolean [Read [Does the food list only contain z, p, and ¢ elements?
valid boolean |Read [Does all properties have valid values?

pizzaSelected [boolean |Read [Is one of the elements in the food list a z?

pastasSelected |boolean [Read [Is one of the elements in the food list a p?

chineseSelected |boolean |Read |Is one of the elements in the food list a c?

98

Chapter 8. Processing Input and Output

All these properties are read-only, because the bean calculates their values based on the
properties holding user data. The first six properties correspond one-to-one to the individual
user data properties, while the valid property provides an easy way to see if all properties
have valid values. The last three aren't really validation properties; they tell if a specific food
type is part of the list of favorite foods.

These properties make the validation task much easier than in the JSTL example. As before,
we look at one piece at the time, starting with the Name field processing in Example 8-10.

Example 8-10. Validating the name with a bean (validate_bean.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">
<jsp:useBean id="userInfo"
class="com.ora.jsp.beans.userinfo.UserInfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>
<form action="validate bean.jsp" method="post">
<input type="hidden" name="submitted" wvalue="true">

<table>
<c:if
test="${param.submitted && userInfo.userNameValid == false}">
<tr><td></td>

<td colspan="2">
Please enter your Name
</td></tr>
</c:if>
<tr>
<td>Name:</td>
<td>
<input type="text" name="userName"
value="<c:out value="${userInfo.userName}" />">
</td>
</tr>

Like in Example 8-4, the <jsp:useBean> and <jsp:setProperty> actions capture the
user input. The only difference is that these action elements are now at the top of the page.
The bean is created and initialized before it tests for valid input and fills out the form with the
previously entered values. Using the hidden field to avoid displaying error messages the first
time the page is loaded is a trick we used in the JSTL version of the page as well.

The validation and setting the field value is a little bit different than in the JSTL example, but
not much. Instead of testing if the userName parameter is equal to an empty string, the
userNameValid bean property is compared to the Boolean value false. Even though it
doesn't look like we have simplified life much, we have. All logic for deciding what is a valid
value is now encapsulated in the bean instead of being coded in the page. If at a future date
you decide to develop stricter rules for what a name must look like (maybe scan for
profanities), you have to change only the bean; all pages where the bean is used remain the
same. The Name field is then set to the value the user submitted, if any, with a <c:out>
action using the bean's userName property value.

99

Chapter 8. Processing Input and Output

Example 8-11 shows how the birth date value is processed.

Example 8-11. Validating the birth date with a bean (validate_bean.jsp)

<c:if test="${param.submitted && 'userInfo.birthDatevValid}">
<tr><td></td>
<td colspan="2">
Please enter a valid Birth Date
</td></tr>
</c:if>
<tr>
<td>Birth Date:</td>
<td>
<input type="text" name="birthDate"
value="<c:out value="${userInfo.birthDate}" />">
</td>
<td> (Use format yyyy-mm-dd)</td>
</tr>

Testing the value of the bean's birthDateValid property, following the same pattern as for
the name, handles the validation. But if you look carefully, you notice that instead of testing
for equality with the value false, this test uses the !userInfo.birthDateValid syntax
instead. This is just shorthand for the same kind of test. The ! operator means "if the value is
true, treat it as false, and vice versa". Formally, this operator is called the logical
complement operator. I normally use the shorthand syntax because it's easier to type.

What's more interesting in Example 8-6 than the syntax difference is that as with the name
parameter test, all validation logic is encapsulated in the bean. Testing if a date is valid can be
quite a challenge. For instance, February 28 is a valid date only for a leap year. By delegating
the validation to the bean and using only the result in the JSP page, the page author doesn't
need to know any of these details. The Birth Date field value is set by, you guessed it, a
<c:out> action using the bean's birthDate property.

The Email Address and the Lucky Number fields are handled the same way as Name and
Birth Date.

The Gender field is dealt with pretty much the same as in the JSTL version, as shown in
Example 8-12.

Example 8-12. Validating the gender choice with a bean (validate_bean.jsp)

<c:if test="${param.submitted && 'userInfo.genderValid}">
<tr><td></td>
<td colspan="2">
Please select a valid Gender
</td></tr>
</c:if>
<tr>
<td>Gender:</td>
<td>
<c:choose>
<c:when test="${userInfo.gender == 'f'}">
<input type="radio" name="gender" wvalue="m">
Male

<input type="radio" name="gender" value="f" checked>
Female
</c:when>

100

Chapter 8. Processing Input and Output

<c:otherwise>
<input type="radio" name="gender" value="m" checked>
Male

<input type="radio" name="gender" value="f">
Female
</c:otherwise>
</c:choose>
</td>
</tr>

The only differences are that the bean's gendervalid property is used for the validation
test, and the gender property is used to decide which choice to mark as checked, instead of
the parameter value used for both these tasks in the JSTL version.

Example 8-13 shows that the biggest bang for the buck we get from using a bean instead of
just JSTL is the simplified processing of the favorite food choices.

Example 8-13. Validating the food choices with a bean (validate_bean.jsp)

<c:if test="${param.submitted && 'userInfo.foodvalid}">
<tr><td></td>
<td colspan="2">
Please select only valid Favorite Foods
</td></tr>
</c:if>
<tr>
<td>Favorite Foods:</td>
<td>
<input type="checkbox" name="food" value="z"
<c:if test="${userInfo.pizzaSelected}">checked</c:if>>
Pizza

<input type="checkbox" name="food" value="p"
<c:if test="${userInfo.pastaSelected}">checked</c:if>>
Pasta

<input type="checkbox" name="food" value="c"
<c:if test="${userInfo.chineseSelected}">checked</c:if>>
Chinese
</td>
</tr>

All the looping and testing of the individual values that is necessary in the JSTL version of the
page are now encapsulated in the bean, so all that's needed here is to use the bean's properties
to decide whether to add an error message or not, and which checkboxes to check.

8.3 Formatting HTML Output

If you enter a value that contains double quotes in the Name field in the validate jstl.jsp -- or
validate bean.jsp -- page, such as Prince, "the artist", submit the form and look at the HTML
code generated by the JSP page using your browser's View Source function, you see
something like this:

<tr>
<td>Name:</td>
<td>
<input type="text" name="userName"
value="Prince, "the artist"">
</td>
</tr>

101

Chapter 8. Processing Input and Output

Note that the quotes have been replaced with ". What's going on here? This is the
<c:out> action's doing, and it's a very good thing. In the JSP file, double quotes enclose the
value of the <input> element's value attribute. If the value itself includes a double quote,
the browser gets confused and interprets the first double quote in the value as the end of the
value. To prevent this type of problem, the <c:out> action converts all problematic
characters to their so-called HTML character-entity equivalents. It converts single quotes,
double quotes, less-than symbols, greater-than symbols, and ampersands to the HTML
character entities ', ", &1t;, >, and &, respectively. The browser
handles the converted values without problem.

Besides taking care of the problem with quotes in a dynamic value, this type of character
conversion also offers some protection against what's called a cross site scripting attack.
What this means is that a malicious user submits input that causes problems when it's
displayed by the browser. If the special characters aren't converted, entering
<script>window.close()</script> in the Name field for Example 8-2, for
instance, causes the window to disappear. When text like this is added to the response as-is, a
browser with JavaScript enabled executes the script, with the effect that the browser window
is closed. In this example, the malicious user harms only herself, but a more serious scenario
is a site where a user can submit text that's then displayed to all other site visitors. A user
submitting a partial HTML element can be equally annoying, for instance turns
all text after the entry into an HTML link if the special characters aren't converted. The fact
that <c:out> converts all special characters solves these particular examples, but
unfortunately I can't guarantee that it solves all clever tricks that someone can come up with. I
recommend that you read the CERT information about this vulnerability
(http://www.cert.org/advisories/CA-2000-02.html) and protect your sites as best you can.

In a few rare cases, converting special characters can in itself cause problems. The <c:out>
action therefore provides an attribute named escapeXml that can be set to false to disable
this behavior. We look at one example of this feature later in this book. For the most part,
though, you can forget about the potential problems special characters can cause and rely on
the <c:out> action to take care of it for you.

102

Chapter 9. Error Handling and Debugging

Chapter 9. Error Handling and Debugging

When you develop any application that's more than a trivial example, errors are inevitable. A
JSP-based application is no exception. There are many types of errors you will deal with.
Simple syntax errors in the JSP pages are almost a given during the development phase. And
even after you have fixed all the syntax errors, you may still have to figure out why the
application doesn't work as you intended because of design mistakes. The application must
also be designed to deal with problems that can occur when it's deployed for production use.
Users can enter invalid values and try to use the application in ways you never imagined.
External systems, such as databases, can fail or become unavailable due to network problems.

Since a web application is the face of the company, making sure it behaves well, even when
the users misbehave and the world around it falls apart, is extremely important for a positive
customer perception. Proper design and testing is the only way to accomplish this goal.

In this chapter, we look at the types of problems you can expect during development, as well
as those common in a production system. We see how you can track down JSP syntax and
design errors and how to deal with runtime problems in a graceful manner.

9.1 Dealing with Syntax Errors

The first type of error you will encounter is the one you, or your coworkers, create by simple
typos; in other words, syntax errors. The JSP container needs every JSP element to be written
exactly as it's defined in the specification in order to process the JSP page. When it finds
something that's not right, it tells you. How easy it is to understand what it tells you depends
on the type of error, the JSP container implementation, and sometimes, on how fluent you are
in computer gibberish.

9.1.1 Element Syntax Errors

All container implementations report syntax errors, but details such as the wording of the
messages, how much information the message contains, and where the message is written
differ between them. In this chapter, I show examples only of the messages produced by
Tomcat.

Let's first look at how Tomcat reports some typical syntax errors in JSP directives and action
elements. Example 9-1 shows a version of the easy.jsp page from Chapter 5 with a syntax
error.

Example 9-1. Improperly terminated directive (error1.jsp)

<%Q@ page contentType="text/html" >
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>

1 + 2 4+ 3 = <c:out value="${1 + 2 + 3}" />

103

Chapter 9. Error Handling and Debugging

</body>
</html>

The syntax error here is that the page directive on the first line isn't closed properly with %>;
the percent sign is missing. Figure 9-1 shows what Tomcat has to say about it.

Figure 9-1. Error message about an unterminated JSP directive

s Baanoh 0l B 8BE - Erod seqort - Mgaly [Bud 10 20001220050 =100 %
[l £ Ywew Sewsch Go Backrawer Tarkz Help [wbug QA

J J \J J | o Biky o st EOFTWs b e 1 | i, Grasch '-'-';'J E.'::E

T e m—— e :] =]

T Ewceplion repon u
Y IITTEED Imamal Server Eror
o SECTETET The ssrver encountered an intermal emor (Imtemal Server Emor] that presventad it from hfang thes request

ez apache. e conpller . Parsefeeceptlon: Johderzosl, 3op (0,31 Ustesninated <4 bag
Bt org.apacke . jasper.compiles, Papserdbirect bve, aceept | Parses . Javat 246}

B 0T Spachs , AASpEC.o0pE ler Porser, parse |Faxser, davar 1145)
B OCQ. apacke , AASpEC. o0l ler, Parser, parse |Faraer, davas 1100)
BE ST SPACES . AREPET.conpd LT, PACser, paTss (Faraer . dave: 10591

BE OTG. APACES . ARRPET.cofpd ler, PArssrControl lar, parss (ParsstConsrol Ler., faeac2 03]
mb_org.spacks . Jmzpsr.compsles. Conpdlec.

2 lmiCompiles. jere:2E0) -
o]
O) 95 B @ | Docement: D (15T tecy =

Tomcat reports the error by sending an error message to the browser. This is the default
behavior for Tomcat, but it's not mandated by the JSP specification. The specification requires
only that a response with the HTTP status code for a severe error (500) is returned, but how a
JSP container reports the details is vendor-specific. For instance, the error message can be
written to a file instead of the browser. If you use a container other than Tomcat, check the
container documentation to see how it reports these types of errors.

The actual error message in Figure 9-1 is what is called an exception stack trace. When
something goes really wrong in a Java method, it typically throws an exception. An exception
is a special Java object, and throwing an exception is the method's way of saying it doesn't
know how to handle a problem. Sometimes another part of the program can take care of the
problem in a graceful manner, but in many cases the best that can be done is to tell the user
about it and move on. That's what the Tomcat container does when it finds a problem with a
JSP page during the translation phase; it sends the exception stack trace to the browser. The
stack trace contains a message about what went wrong and where the problem occurred. The
message is intended to be informative enough for a user to understand, but the actual trace
information is of value only to a programmer. As you can see in Figure 9-1, the message is:

/ch9/errorl.jsp(0,33) Unterminated <%Q@ tag

The first part of the message is the name of the JSP page. The numbers within parentheses
indicate on which line and character position in the file the error was found (both the line and
the position are numbered from 0), and then the message states what the problem is. So this
message tells us that a directive (an element starting with <%@) on the first line isn't
terminated as expected at position 33. In this case it's both the correct diagnosis and the right
location.

104

Chapter 9. Error Handling and Debugging

It's not always this easy to interpret the error message. Example 9-2 shows another version of
easy.jsp with a different syntax error.

Example 9-2. Improperly terminated action (error2.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<hl1>JSP is as easy as ...</hl>
1 + 2 + 3 =<c:out value="${1 + 2 + 3}" >

</body>
</html>

The syntax error here is almost the same as the "unterminated tag" in Example 9-1, but now
it's the <c:out> action element that's not terminated properly (it's missing the closing slash
required for an empty element). The message reported by Tomcat in this case is:

End of content reached while more parsing required: tag nesting error?

This message isn't really helpful, because the line and position information is missing, and it
gives no clue about which action element is in error. The error in this case is that, since the
action element doesn't have a body, a single tag ending with /> should be used, but in
Example 9-2 it's terminated with just >. Because that's valid syntax for a JSP action that
contains a body, the JSP container can't tell that it's a syntax error at this point. Instead, it
treats it as the opening tag for an element with a body and complains that it can't find the
closing tag before the file ends. The error message could be a lot more informative, for
instance include the name of the action element that is missing the closing tag, and maybe
even the position of the opening tag. Let's hope this is fixed in the Tomcat version you use.

Another common error is a typo in an attribute name. The value attribute for the <c:out>
action is misspelled in Example 9-3.

Example 9-3. Mistyped attribute name (error3.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>
1 + 2 + 3 = <c:out valu="${1 + 2 + 3}" />

</body>
</html>

Tomcat reports the problem like this:

105

Chapter 9. Error Handling and Debugging

/ch9/error3.jsp(10,16) According to the TLD attribute value is mandatory
for tag out

In this case, the typo is in the name of a mandatory attribute, so Tomcat reports it as missing.
If the typo is in the name of an optional attribute, Tomcat reports it as an invalid attribute
name.

Example 9-4 shows a type of error that results in a message that is hard to figure out unless
you know what's going on.

Example 9-4. Missing end quote in attribute value (error4.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>
1 + 2 + 3 = <c:out value="${1 + 2 + 3} default="Doh!" />

</body>
</html>

If you look carefully at the <c:out> element, you see that the closing quote for the value
attribute is missing. If another attribute is specified for the same element, like the default
attribute used here, Tomcat reports the problem like this:

/ch9/errord.jsp(10,56) Attribute Doh! has no value

What's happening is that Tomcat includes everything up to the second quote as the value of
the value attribute. It then assumes that the next word (Doh ! in this example) is an attribute,
and because it's not followed by an equal sign, it reports that it doesn't have a value.

Let's close this section with one of the most frustrating scenarios of all, namely forgetting to
include a taglib directive for the tag library used in the page. This doesn't result in an error
message at all, but all custom action elements are treated as template text and just added to the
response without being executed. Before pulling all your hair trying to understand why none
of your actions are being executed, make sure you have included the taglib directive. An
easy way to see if this is the problem is to use the browser's View Source function: if the
source for the response sent to the browser includes action elements, they where not processed
by the web container, most likely due to a missing or incorrect taglib directive.

The examples here are the most common ones for JSP element syntax errors. Tomcat can give
you pretty good information about what's wrong in most of these cases, but this is still an area
where | expect many improvements to be implemented in later versions of Tomcat as well as
in other JSP containers. The JSP authoring tools that emerge now may also help. By
providing GUI-based interfaces that generate the action elements automatically, they can
eliminate this type of syntax problem.

106

Chapter 9. Error Handling and Debugging

9.1.2 JSTL Expression Language Syntax Errors

How well JSTL EL syntax errors are reported varies between JSTL implementations and web
containers, because the EL isn't yet part of the JSP specification. The JSTL Reference
Implementation (RI) is doing a pretty good of job of reporting EL syntax errors. In a web
container that implements an optional JSP feature (described in Chapter 21), it even includes
information about the exact line and column in the JSP source file. Unfortunately, Tomcat 4
doesn't implement this feature yet, but will hopefully do so in a future version.

We look at a few EL syntax error examples in this section so you can see what to expect when
you use the JSTL RI and Tomcat 4.0.4. Later versions, and other implementations may do
better (or worse), but these examples illustrate what to look for.

Example 9-5 shows a page with a subtle syntax error: the curly braces are missing in the EL
expression.

Example 9-5. Missing both curly braces (error5.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>
1 + 2 4+ 3 = <c:out value="81 + 2 + 3" />

</body>
</html>

This is an easy mistake to make, but it's not recognized as a syntax error at all. To the EL, this
means that the value is a plain-text value, not an expression. When used with the <c:out>
action, it's easy to figure out what's wrong because the text value is added to the response as-is
instead of the being evaluated: 1 + 2 + 3. But if you make this mistake with an attribute
value that should provide the action with input to process in some way, the problem may not
be so easy to spot. For instance, if you forget the curly braces for the <c: forEach> items
attribute, it takes it as a text value and loops once over its body with the text as a single
element.

Let's see what happens if you forget only the end curly brace, as shown in Example 9-6.

Example 9-6. Missing end curly brace (error6.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>JSP is Easy</title>
</head>
<body bgcolor="white">

<h1>JSP is as easy as ...</hl>

1 + 2 4+ 3 =<c:out value="8{1 + 2 + 3" />

107

Chapter 9. Error Handling and Debugging

</body>
</html>

Tomecat 4 and the JSTL RI report this error as shown in Figure 9-2.

Figure 9-2. JSTL EL syntax error message

Apsche |omcstid 04 - Lios seport - Mozit ([Buld 10 2GET10) . i =0] =
«» Fla Bl Vi Sewch Go Bockmak: Tmks Hep [Debug Q6
. l;i}d 0 .,J | v rocahos-ste e i | [seacn | :Cég

Apache Tomcat/4.0.4 - HTTP Status 500 - Internal
Server Error

T Excephion report
[IEETTENE Intemal Server Emor]

aiil| The server encounterad an imtemal srror {intemal Server Error] thet prevented it from fulifling this
request.

LTI Or L Aach JEse Jasmar Excaption

Validation error messages from tag library c

Eng = "put' J/ attpibusE = "yelus'; kn =reor cecgreed ohils pareing cumtomn mction stTribute
Apglue® sich valiue P31 & 2 + 3%: Epsguntered "%, expected ame gf [%)®, B ¥, FuR, fgpe HgE
ALEN, MeaR, Mage, Fiew, Tam Moan, Mgt MimE Mpee spe now w_n mEn, wim Agir mye,

fpod®, Fend¥, fEL, docd, A

14l ") e :
I D 85 F o Docuvent Dose i 16 1sc1] IR i

&L ooy .apache. baspsg .conpl ber JapParssEventlistenst cvalidace (JapFarssEvencliscensr .3 m.r;—

The error message is produced by the JSTL RI translation-phase validator and contains four
pieces of information:

e The action name:
tag = 'out'
e The attribute name:

attribute = 'value'

e A generic message that includes the complete EL expression:

An error occurred while parsing custom action attribute "value" with value
"S{1 + 2 + 3"

e A more detailed message about the problem:

Encountered "", expected one of ...").

This isn't so bad. The first three pieces of information make it fairly easy to find the attribute
value that's in error. And the fourth message; well, it makes more and more sense when
you've seen messages like this a few times. What's missing is the actual line number for the
error. Hopefully Tomcat will implement the optional feature I mentioned earlier in a future
version, so that the error location can also be included in the report.

108

Chapter 9. Error Handling and Debugging

Figure 9-2 is a good example of how all true syntax errors are reported by the JSTL RI (only
the detailed messages differ), but some types of errors can't be found until the request-time
phase, even though they may be regarded as syntax errors. Example 9-7 illustrates one such
case.

Example 9-7. Misspelled property name (error7.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>Looking for information</title>
</head>
<body bgcolor="white">

<hl>Looking for information</hl>
The Current URI: <c:out value="${pageContext.request.requestUri}" />

</body>
</html>

The problem here is that the property name is misspelled: it should be requestURI ("URI"
in all caps) instead of requestUri. In this particular example, the EL could actually figure
this out at translation time, because pageContext is an implicit variable, so all its properties
are known. But the type of an application variable is known only at request time, so it's not
possible to notice a misspelled property name for the general case. The JSTL RI has opted for
consistency in how to handle this type of error. The way this error is reported is by throwing
an exception with this message:

An error occurred while evaluating custom action attribute "value" with

value "${pageContext.request.requestUri}": Unable to find a value for
"requestUri" in object of class "org.apache.catalina.connector.HttpRequestFacade"
using operator "."

It contains enough details about the error, such as the attribute name and value, to make it
feasible to match it with its source in the page. Because it's not caught until request time, it's
unfortunately impossible to include the line number in a JSP 1.2 container.

Example 9-8 shows an almost identical error, but it results in a completely different result.

Example 9-8. Misspelled parameter name (error8.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<html>
<head>
<title>Looking for information</title>
</head>
<body bgcolor="white">

<hl>Looking for information</hl>
The missing parameter: <c:out value="${param.misspelled}" />

</body>
</html>

109

Chapter 9. Error Handling and Debugging

Here it's the name of a request parameter that is misspelled, and it's not reported as an error.
Instead the expression evaluates to null, which the <c:out> action converts to an empty
string. This is by design, and it makes it easier to handle the typical case in which a missing
parameter should be handled the same as a parameter with an empty string as the value. If a
missing parameter resulted in an exception, you would have to do a lot more testing in all JSP
pages, with <c: if> actions and expressions like this all over the place:

<c:if test="${!empty param.someParam}">
<!-- Here it's safe to use the parameter -->
</c:if>

The downside is that it makes it harder to find parameter-name spelling errors. The EL
handles all types of name/value pair collections, such as the implicit variables representing
scopes (pageScope, requestScope, sessionScope, and applicationScope) as
well as any application variable of type java.util.Map, the same way.

9.2 Debugging a JSP Application

After you have fixed all syntax errors, pat yourself on the back and enjoy the moment. If the
application is more than a trivial example, however, this moment will probably be short-lived:
you will likely find that one or more things still don't work as you expected. Logic errors,
such as not taking care of all possible input combinations, can easily slip into an application
during development. Finding and correcting this type of problem is called debugging.

For applications developed in compiled languages such as Java, C or C++, a tool called a
debugger is often used in this phase. It lets you step through the program line by line or run
the program until it reaches a break point that you have defined, and lets you inspect the
values of all variables in the program. With careful analysis of the program flow in runtime,
you can discover why it works the way it does, and not the way you want it to. There are
debuggers for JSP as well, such as IBM's Visual Age for Java. This product lets you debug a
JSP page exactly the same way as a program written in a more traditional programming
language.

But a real debugger is often overkill for JSP pages. If your pages are so complex that you feel
the need for a debugger, you may want to move code from the pages into JavaBeans or
custom actions instead. These components can then be debugged with a standard Java
debugger, which can be found in most Java Interactive Development Environments (IDEs).
To debug JSP pages, another time tested debugging approach is usually sufficient: simply
adding code to print variable values to the screen.

Let's look at how you can use this approach to find an error in an incorrect version of the
input validation page from Chapter 8, shown in Example 9-9.

Example 9-9. Logical error (error9.jsp)

<%@ page contentType="text/html" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>

<body bgcolor="white">

110

Chapter 9. Error Handling and Debugging

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">

<form action="error9.jsp" method="post">
<input type="hidden" name="submitted" value="true'">

<table>
<c:if test="${param.submitted || empty param.userName}">
<tr><td></td>

<td colspan="2">
Please enter your Name
</td></tr>
</c:if>

No matter what value you enter in the Name field, it still displays the error message. There's
clearly something wrong here.

To find out what's going on, you can add a few <c:out> actions that include the parameter
values and the value of the <c: i £> test expression in the response:

<%@ page contentType="text/html" %>

<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<html>

<body bgcolor="white">

${param.submitted}: <c:out value="${param.submitted}" />

${param.userName}: <c:out value="${param.userName}" />

${param.submitted || empty param.userName}:
<c:out value="${param.submitted || empty param.userName}" />
<html>
<head>
<title>User Info Entry Form</title>
</head>

<body bgcolor="white">

<form action="validate jstl.jsp" method="post">
<input type="hidden" name="submitted" value="true">

<table>
<c:if test="${param.submitted || empty param.userName}">
<tr><td></td>

<td colspan="2">
Please enter your Name
</td></tr>
</c:if>

The result is shown in Figure 9-3.

111

Chapter 9. Error Handling and Debugging

Figure 9-3. Response with debug output

Fis Edt Vem Sesch [Go Bookmake Tatks Heip Debug 0N
h

:d:' ‘J \-) \J | ¢ Hifp Ao aodd A e chS s Siap | |':L Seaich .‘3:_-:

§(param sobemited}: rue
$iparam uzerilame . Hans Bergatsn
§(param sobeniited || empby parim us echlarme) - e

HMane Hans Bergaten
Eirth Date: il (e Formnak yyyy-mren-dd)
Esmail Addrese hars (e Eormak nameE) c o gy, ¢ o)
Gender : ?:Lﬂr,
Iemane
Luacky sumber 13 (A namber betweeen | and 100]

HIEra
Favorte Foods & Pasta
Chinese

Sand Daln

Gl &0 O (B0 o | Decumsnt Dore (314 secel I

Now it's a bit easier to see why it doesn't work. The parameter values have the expected
values, but the EL expression used by <c:if> returns true even when the userName
parameter has a value. It's because the | | operator is used instead of the & & operator, so when
the submitted parameter has the value true, the second part of the expression isn't evaluated
at all.

Adding a couple of <c:out> actions to see variable values as part of the response in the
browser is the easiest way to debug a JSP page. But sometimes multiple pages are involved in
the processing of a single request, as you will see in Chapter 10. In this case, it may be better
instead to write the debug output to a file or the command window where you started the
server. You can use a custom action called <ora:fileWrite> (described in Chapter 20) to
write to a file instead of the response. To write to the standard log file for the application,
place the <c: out> action within the custom action like this:

<ora:fileWrite fileName="log">
$S{param.submitted}: <c:out value="${param.submitted}" />

$S{param.userName} : <c:out value="${param.userName}" />

S{param.submitted || empty param.userName}:
<c:out value="${param.submitted || empty param.userName}" />

</ora:fileWrite>

The name and location of the application log file is container-dependent. Tomcat can be
configured to use a separate file for each application, but by default, it writes messages for all
applications to files named according to the logs/<hostname> log.<date>.txt pattern, e.g.
logs/localhost log 2002-03-30.txt. Instead of log, which is a keyword the
<ora:fileWrite> action recognizes as an order to use the application log file, you can
specify the absolute file path for any file the container has write access to as the fileName
attribute value.

Most containers, including Tomcat, also let you write messages to the window where it was

started. That's where the <ora:fileWrite> action writes when you omit the fileName
attribute:

112

Chapter 9. Error Handling and Debugging

<ora:fileWrite>

${param.submitted}: <c:out value="${param.submitted}" />

S{param.userName}: <c:out value="${param.userName}" />

$S{param.submitted || empty param.userName}:

<c:out value="${param.submitted || empty param.userName}" />

</ora:fileWrite>

Writing to the command window is convenient during development, when you run your own
web server started in a command window. Writing to the application log file is useful when
you debug an application that is running in a web server you don't have control over, or if you
need to record the debug messages in a file for further analysis later. But no matter where you
tell <ora:fileWrite> to write the info, you typically don't want to use this action in your
production code because it always writes.

To make it easy to generate the most common types of debug output only on demand, you can
instead use the <ora:debug> custom action I developed for this book. It's described in
Table 9-1.

Table 9-1. Attributes for <ora:debug>

. Dynamic
Attribute |Java y .
value Description
name type
accepted
Mandatory. One of requestInfo, headers, cookies,
type string |No params, pageScope, requestScope,
sessionScope, or applicationScope.

The <ora:debug> action has only one attribute, named type, telling the action the type of
debug information to write. To control where the information is written, you send a debug
parameter with the request for the page. This request parameter must have one or more of the
following values (separated by plus signs):

resp
Includes the debug information in the response as an HTML table
stdout
Writes the debug information to System.out
log

Writes the debug information to the application log file

Let's look at an example. The JSP page shown in Example 9-10 first creates some test data
and then uses the debug action to look at various pieces of information.

Example 9-10. Page with the <ora:debug> action (debug.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

_n —_n

<%@ taglib prefix="ora" uri="orataglib" %>

113

Chapter 9. Error Handling and Debugging

<html>
<head>
<title>Debug Output</title>
</head>
<body bgcolor="white">

<%-- Add test variables to the request scope --%>

<c:set var="aString" scope="request" value="Hello World!" />
<jsp:useBean id="aDate" scope="request" class="java.util.Date" />
<c:set var="aNumber" scope="request" value="${aDate.minutes}" />

<h1>Debug Output</hl>

<ora:debug type="headers" />
<ora:debug type="cookies" />
<ora:debug type="params" />
<ora:debug type="requestScope" />
</body>
</html>

The <c:set> and <jsp:useBean> actions creates three variables in the request scope in
JSP. Objects placed in the request scope can be accessed by all JSP pages used to process the
same request. Don't worry about how this works now; you'll learn more about all the JSP
scopes in Chapter 10. Here, it's used only to show you how the <ora:debug> action can
display scope information. Next, five <ora:debug> actions display all headers, cookies,
request parameters, and request scope variables.

The <ora:debug> action writes information only if the request contains a debug request
parameter with a valid value. Therefore, you can keep the action element in your pages all the
time and activate it only when you need the debug info. For instance, you can request the page
with a URL that includes the debug parameter in the query string like this:

http://localhost:8080/ora/ch9/debug. jsp?debug=resp+stdouts&a=b

You then get a response as shown in Figure 9-4.

114

Chapter 9. Error Handling and Debugging

Figure 9-4. Debug output

* Deebusg Doyt - Wosla S [0 20001271861 =100 x|
fa E8 'ers Gomch o Fochraks Tasks Holp [ebug G4
y '\._.JJ J J a - Mg e alnan DO Lot n g 7ol = o ot o it aet | |55, Smasch = "._J
= CBemhrarks Gy Fres LA Les bkt Hermage i Mesten G Wabe o Correbars i Baboural i Seailpdals G Meisiacn
Debug Quiput
hradais
wnike JSESEIONID=ATSAFE I3 AR ENEFFRERTER | SRS 36ER
wrensctios keep-alee

arzept-encodag goe, dedave, compress; =9
o tesatennd, appheaioation] appleahentshimiend, sl g=0 9, mageiog, sagepeg, mmeilg=0.2, estipln,g=0 8
. trsafoe, W=]

arcept-charset [30-2556- 1, of-Boq=0 65, T.p=066

arcept-beguags | en-w, rrg=il EH
user-agest bonla's 0 (Wndows, T, W'n S d B ema (T3, e (00 T) CeckaD00E 1221
ks alree 300
hos bocaliosH B
rapkies

TEESSICRTID | A7SAFET S AREVRET BEEREE 15050 36EE
ar s
a k

debeag resp sidoat
renuectSraps
aftneg | o lang, Steg Halo Wosld!
abfiibin i lang, Indegs 55
AlhnE e] e San Wi 30 142849 FET 2002
o = 2 B &0 | Sacsant Core (056 —d

Because the debug parameter specifies both resp and stdout, you also get all the debug
information in the window in which you started Tomcat.

9.3 Dealing with Runtime Errors

Eventually, your application will work the way you want. But things can still go wrong due to
problems with external systems your application depends on, such as a database. And even
though you have tested and debugged your application, there may be runtime conditions you
didn't anticipate.

Well-behaved components, such as beans and JSP actions, deal with expected error conditions
in a graceful manner. For instance, the UserInfo bean used in Chapter 8 has a valid
attribute that is false unless all properties are set to valid values. Your JSP page can then
test the property value and present the user with an appropriate message. The JSTL actions
also act gracefully in most situations, for instance the <c:forEach> action simply does
nothing if the i tems attribute value is null.

Some problems are impossible for the component to handle gracefully, however, and the user
needs to be told about the problem instead. The standard way Java does this is to throw an
exception. Beans, JSP actions, and the EL processor, can throw exceptions when something
goes really bad. By default, the JSP container catches the exception and displays its message
and stack trace in the browser, similar to what's shown in Figure 9-1. But that's hardly the
type of error message you want the application users to see. Besides, the exception messages
may reveal information that can be sensitive from a security point of view, such as file paths
and SQL statements. You can present a much more user-friendly, and secure, response by
telling the JSP container to use a customized error page instead.

Example 9-11 shows a JSP page with a page directive that defines an error page.

115

Chapter 9. Error Handling and Debugging

Example 9-11. Page with an error page definition (calc.jsp)

<%Q@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%Q@ page errorPage="errorpage.jsp?debug=log" %>
<c:set var="sourcePage" scope='"request"
value="§${pageContext.request.requestURI}" />

<html>
<head>

<title>Calculator</title>

</head>

<body bgcolor="white">

<jsp:useBean id="calc" class="com.ora.jsp.beans.calc.CalcBean">
<jsp:setProperty name="calc" property="*" />

</jsp:useBean>

<%-- Calculate the new numbers and state info --%>

<c:set var="currentNumber" value="${calc.currentNumber}"

<form action="calc.jsp" method="post">
<table border=1>

<tr>

<td colspan="4" align="right">
<c:choose>

<c:when test="${currentNumber == "''}">

</c:when>

<c:otherwise>
<c:out value="S${currentNumber}" />

</c:otherwise>
</c:choose>
<input type="hidden" name="currentNumber"

value="<c:out value="${currentNumber}"

<input type="hidden" name="previousNumber"

/>">

/>

value="<c:out value="${calc.previousNumber}" />">

<input type="hidden" name="currentOperation"

value="<c:out value="${calc.currentOperation}" />">
<input type="hidden" name="reset"

value="<c:out value="S${calc.reset}" />">
</td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 7 "></td>
<td><input type="submit" name="digit" value=" 8 "></td>
<td><input type="submit" name="digit" value=" 9 "></td>
<td><input type="submit" name="oper" value=" / "></td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 4 "></td>
<td><input type="submit" name="digit" value=" 5 "></td>
<td><input type="submit" name="digit" value=" 6 "></td>
<td><input type="submit" name="oper" value=" * "></td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 1 "></td>
<td><input type="submit" name="digit" value=" 2 "></td>
<td><input type="submit" name="digit" value=" 3 "></td>
<td><input type="submit" name="oper" value=" "></td>
</tr>
<tr>
<td><input type="submit" name="digit" value=" 0 "></td>
<td> </td>
<td><input type="submit" name="dot" value=" . "></td>
<td><input type="submit" name="oper" value=" + "></td>
</tr>

116

Chapter 9. Error Handling and Debugging

<tr>
<td> </td>
<td> </td>
<td><input type="submit" name="clear" value=" C "></td>
<td><input type="submit" name="oper" value=" = "></td>
</table>
</form>

</body>
</html>

The errorPage attribute in the page directive specifies the path for the page to be displayed
if an exception is thrown by any JSP element. When the path is specified as in Example 9-11,
the error page must be located in the same directory as the page that references it. However, if
it starts with a slash (/), it's interpreted as a context-relative path, relative to the application's
context path. This means you can define a common error page for all the JSP pages in an
application, even if you place them in multiple subdirectories using a path such as
/errorpage.jsp.

Also note that the error page URI in Example 9-11 includes a query string with the debug
parameter, and that a <c: out> action sets a request scope variable:

<%@ page errorPage="errorpage.jsp?debug=log" %>

<c:set var="sourcePage" scope="request"
value="${pageContext.request.requestURI}" />

The debug parameter lets you use the <ora:debug> action to log information about what
went wrong in the error page. The sourcePage variable, set to the URI for the current page,
is also used in the error page, as you will see soon.

The rest of the page in Example 9-11 implements a simple calculator, shown in Figure 9-5.
It's intended only to illustrate how the error page handling works, so I will not describe it in
detail. When you're done reading this book, it may be a good exercise to figure it out yourself
by looking at the source code.

Figure 9-5. Calculator page

. Calculstor - Mozills [Duild 10 2001122106
Eie Edi Yiew Sesch Go [Coctmats Tasks

=

Helr [Debug 0A

';'}-3 J J _J |5 g Mccabhost BB/ oadchidcake.jip I |~k Smasch | = L
=l

512
i o L Y

O & 5 B & Documenl Done j017 sso) —- 5"

If a user tries to divide a number by zero, the CalcBean used in this page throws an
exception. This triggers the error page shown in Example 9-12 to be invoked.

117

Chapter 9. Error Handling and Debugging

Example 9-12. Error page (errorpage.jsp)

<%@ page contentType="text/html" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="ora" uri="orataglib" %>
<%@ page isErrorPage="true" %>
<html>
<head>
<title>Sorry</title>
</head>
<body bgcolor="white">
We're sorry but the request could not be processed.
Detailed information about the error has been logged so we will
analyze it and correct whatever is causing it as soon as possible.
<p>
Please try again, and
let us know if the
problem persists.

<ora:fileWrite fileName="log">
Error in: <c:out value="${sourcePage}" />
Error message: <c:out value="${pageContext.exception.message}" />
</ora:fileWrite>
<ora:debug type="params" />
</body>
</html>

At the top of the page is a page directive with the attribute i sErrorPage set to true. This
tells the container that the exception property of the implicit pageContext variable
should be initialized with a reference to the exception that caused the page to be invoked. The
type of the exception object is java.lang.Throwable. This class provides a property
named message that contains a message about what went wrong. It's written to the
application log file together with the sourcePage variable created in Example 9-11, using a
combination of the <ora:fileWrite> custom action and the JSTL <c:out> action. All
request parameters are then written to the log file as well, using the <ora:debug> custom
action. In this way, information about which page caused the problem, the exception that was
thrown, and all parameter values that were received with the request causing the problem, is
logged in the application log file when something unexpected happens. You can therefore
look at the log file from time to time to see what kind of problems occur frequently, and
hopefully fine-tune the application to avoid them or at least provide more specific error
messages.

The user isn't interested in any of these details, but wants to be assured that the problem is

being registered and corrected. The same customized error page that logs all the details also
presents an apology and a promise to take care of the problem, as shown in Figure 9-6.

118

Chapter 9. Error Handling and Debugging

Figure 9-6. Customized error page

L Sony - Mozilla 1Buld 1D 30001 122106F

Fim Edi Wiew Ssach Go Eookmade T

G - D:El
Hilp Dahug 04

"-);_; i -_) | % nosfocabost BOA0 o chaveac G] (S Smmch | | S5
#|

Wie're sorry but the request could not be proceszed. Detailed infarmation about the srrer has been
logaed ¢ wre will analvos & and comect whatewsr 1 calang it a5 $oon a5 posnble

Please ey agen, and lel ce know i the problem pecasts

| = G @l & Docersel Done |5 15 sec| =ik= g5

An alternative to specifying an error page with the errorPage attribute in a JSP page is to
declare an error page in the application deployment descriptor. Error pages can be declared
for specific exception types as well as for response status codes:

<error-page>
<exception-type>java.lang.Throwable</exception-type>
<location>/errorpage.jsp</location>

</error-page>

<error-page>
<error-code>500</error-code>
<location>/errorpage.jsp</location>

</error-page>

The <error-page> element contains an <exception-type> or an <error-code>
element, plus a <location> element with the context-relative path for the servlet, JSP page,
or static page to handle the error. The <exception-type> element contains the fully
qualified name of the type of exception you want to handle. Similarly, the <error-code>
element contains the HTTP response status code to handle. You can include multiple
<error-page> elements to use different pages for different exceptions and status codes.
For the <exception-type> element, the container picks the one that most closely matches
the type of the exception thrown, while it uses an exact match for the <error-code>
element.

An error page declaration in the deployment descriptor applies to all resources in the
application. If an errorPage attribute is also specified in a JSP page, it's used instead of the
one declared in the deployment descriptor.

Due to an unfortunate naming mismatch between the servlet and JSP specification, there's one
problem with this approach if you use a JSP page to handle the exception: the exception
property of the implicit pageContext variable isn't initialized so you can't log or display the
exception message as in Example 9-12. I show how you can use a servlet to work around this
problem in Chapter 18.

9.3.1 Catching Exceptions
If a particular type of problem frequently shows up in the log files, you may want to fine-tune

the error handling and deal more gracefully with the problem. There's a JSTL action named
<c:catch>, described in Table 9-2, that can help you with this.

119

Chapter 9. Error Handling and Debugging

Table 9-2. Attributes for JSTL <c:catch>

Attribute [Java Dynamic .
name type value Description
accepted
Optional. The name of the variable to hold the
var string |No java.lang.Throwable if thrown by elements in the
body.

Example 9-13 shows the top part of a modified version of the calc.jsp page that uses
<c:catch> to catch divide-by-zero exceptions.

Example 9-13. Catching an exception (calc2.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<%@ page errorPage="errorpage.jsp?debug=log" %>

<c:set var="sourcePage" scope="request"
value="${pageContext.request.requestURI}" />

<html>
<head>
<title>Calculator</title>
</head>
<body bgcolor="white">

<jsp:useBean id="calc" class="com.ora.jsp.beans.calc.CalcBean">
<jsp:setProperty name="calc" property="*" />
</jsp:useBean>

<%-- Calculate the new numbers and state info --%>
<c:catch var="error">

<c:set var="currentNumber" value="${calc.currentNumber}" />
</c:catch>
<c:if test="${error '= null}">

<c:set var="currentNumber" value="Error" />

<jsp:setProperty name="calc" property="reset" value="true" />
</c:if>

The calc bean's currentNumber property accessor method is the one that performs the
calculation. By placing the <c:out> action with the EL expression that reads this property
within the body of the <c:catch> action, any exception is caught and saved in a variable
named error. The <c:if> blocks tests if the error variable has a value, and if so, sets the
currentNumber variable to "Error" and resets the bean's state by setting its reset property
to true. The result is a nicer response than showing an error page: "Error" appears in the
calculator's display, and the user can just click C and start over.

Dealing with syntax errors and bugs are part of the application-development process. In this
chapter, we have looked at some of the ways you can ease the pain. To minimize the number
of syntax errors, you can use the types of JSP development tools listed at the
http://TheJSPBook.com site. The <ora:debug> custom action presented in this chapter
helps you to see what's going on at runtime when you debug the application. Finally, you can
handle runtime errors by catching the exceptions with <c:catch> and handle them in the
page, and define a customized error page to log information about unexpected errors and say
something nice to the user.

120

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Chapter 10. Sharing Data Between JSP Pages, Requests,
and Users

Any real application consists of more than a single page, and multiple pages often need access
to the same information and server-side resources. When multiple pages process the same
request (e.g., one page that retrieves the data the user asked for and another that displays it),
there must be a way to pass data from one page to another. In an application in which the user
is asked to provide information in multiple steps, such as an online shopping application,
there must be a way to collect the information received with each request and get access to the
complete set when the user is ready. Other information and resources need to be shared
among multiple pages, requests, and all users. Examples are information about currently
logged-in users, database connection pool objects, and cache objects to avoid frequent
database lookups.

In this chapter you will learn how scopes in JSP provide access to this type of shared data.
You will also see how using multiple pages to process a request leads to an application that's
easier to maintain and expand, and learn about a JSP action that lets you pass control between
the different pages.

10.1 Passing Control and Data Between Pages

As discussed in Chapter 3, one of the most fundamental features of JSP technology is that it
allows for separation of request processing, business logic and presentation, using what's
known as the Model-View-Controller (MVC) model. As you may recall, the roles of Model,
View, and Controller can be assigned to different types of server-side components. In this part
of the book, JSP pages are used for both the Controller and View roles, and the Model role is
played by either a bean or a JSP page. This isn't necessarily the best approach, but it lets us
focus on JSP features instead of getting into Java programming. If you're a programmer and
interested in other role assignments, you may want to take a peek at Chapter 17 and Chapter
18. These chapters describe other alternatives and focus on using a servlet as the Controller.

In this section we look at how to separate the different aspects in a pure JSP application, using
a modified version of the User Info example from Chapter 8 as a concrete example. In this
application, the business logic piece is trivial. However, it sets the stage for a more advanced
application example in the next section and the remaining chapters in this part of the book; all
of them use the pattern introduced here.

The different aspects of the User Info example can be categorized like this:
o Display the form for user input (presentation)
o Validate the input (request processing and business logic)

o Display the result of the validation (presentation)

A separate JSP page is used for each aspect in the modified version. The restructured
application contains the three JSP pages shown in Figure 10-1.

121

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Figure 10-1. User Info application pages

Cilfewtt

request 2
o :
senirfeinput. jep werinfoyalidate jsp userinfavalid jso
i farward O forward | b

UserlnfoBean
A View poge
O procens page

Here's how it works. The userinfoinput.jsp page displays an input form. The user submits this
form to userinputvalidate.jsp to validate the input. This page processes the request using the
UserInfoBean and passes control to either the userinfoinput.jsp page (if the input is
invalid) or the userinfovalid.jsp page (if the input is valid). If valid, the userinfovalid.jsp page
displays a "thank you" message. In this example, the UserInfoBean represents the Model,
the userinputvalidate.jsp page the Controller, and userinfoinput.jsp and userinfovalid.jsp
represent the Views.

This gives you the flexibility and maintainability discussed in Chapter 3. If the validation
rules change, a Java programmer can change the UserInfoBean implementation without
touching any other part of the application. If the customer wants a different look, a page
author can modify the View JSP pages without touching the request processing or business
logic code.

Using different JSP pages as Controller and View means that more than one page is used to
process a request. To make this happen, you need to be able to do two things:

e Pass control from one page to another
e Pass data from one page to another

10.1.1 Passing Control from One Page to Another
Before digging into the modified example pages, let's go through the basic mechanisms for
satisfying the two requirements. As shown in Figure 10-1, the userinfovalidate.jsp page

passes control to one of two other pages based on the result of the input validation. JSP
supports this through the <jsp: forward> action, described in Table 10-1.

<jsp:forward page="userinfoinput.jsp" />

122

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Table 10-1. Attributes for <jsp:forward>

Attribute |Java

Dynamic value accepted [Description
name type

Yes, but only the scripting|Mandatory. A page-relative or context-

Stri . 1
bege " |kind (see Chapter 15) relative path for the target resource.

The <jsp:forward> action stops processing of one page and starts processing the page
specified by the page attribute instead, called the farget page. The control never returns to
the original page.

The target page has access to all information about the request, including all request
parameters. You can also add additional request parameters when you pass control to another
page by using one or more nested <7jsp: param> action elements (see Table 10-2):

<jsp:forward page="userinfoinput.jsp" >
<jsp:param name="msg" value="Invalid email address" />
</jsp:forward>

Table 10-2. Attributes for <jsp:param>

Attribute Java Dynamic value accepted Description
name type
name string |No Mandatory. The parameter
name.
value String Yes, but only the scripting kind (see|Mandatory. The parameter
Chapter 15) value.

Parameters specified with <jsp:param> elements are added to the parameters received with
the original request. The target page, therefore, has access to both the original parameters and
the new ones, and can access both types in the same way. If a parameter is added to the
request using a name of a parameter that already exists, the new value is added first in the list
of values for the parameter.

The page attribute is interpreted relative to the location of the current page if it doesn't start
with a /. This called a page-relative path. If the source and target page are located in the same
directory, just use the name of the target page as the page attribute value, as in the previous
example. You can also refer to a file in a different directory using notation such as
../foo/bar.jsp or /foo/bar.jsp. When the page reference starts with a /, it's interpreted relative
to the top directory for the application's web page files. This is called a context-relative path.

Let's look at some concrete examples to make this clear. If the application's top directory is
C:\Tomcat\webapps\myapp, page references in a JSP page located in
C:\Tomcat\webapps\myapp\registration\userinfo are interpreted like this:

pagez"bar.jsp"

C:\Tomcat\webapps\myapp \registration\userinfo\bar.jsp

page="../foo/bar.jsp"

123

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

C:\Tomcat\webapps\myapp\registration\foo\bar.jsp
page="/foo/bar.jsp"
C:\Tomcat\webapps\myapp\foo\bar.jsp

Note that even though Table 10-1 and Table 10-2 show you can use a dynamic value for the
<jsp:forward> page attribute and the <jsp:param> value attribute, you can't use an EL
expression. The reason for this is discussed in Chapter 15, and alternatives to these two
actions that support EL expressions (<ora: forward> and <ora:param>) are introduced
later in this book.

10.1.2 Passing Data from One Page to Another

JSP provides different scopes for sharing data objects between pages, requests, and users. The
scope defines how long the object is available and whether it's available only to one user or to
all application users. The following scopes are defined: page, request, session, and
application.

Objects placed in the default scope, the page scope, are available only within that page. That's
the scope used in all examples you have seen so far. The request scope is for objects that need
to be available to all pages processing the same request. Objects in the session scope are
available to all requests made from the same browser, and objects in the application scope are
shared by all users of the application (see Figure 10-2). According to the JSP specification,
the name used for an object must be unique within all scopes. This means that if you have an
object named userInfo in the application scope, for instance, and save another object with
the same name in the request scope, the container may remove the first object. Few containers
(if any) enforce this rule, but you should ensure you use unique names anyway to avoid
portability problems.

Figure 10-2. Lifetime of objects in different scopes

124

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Clfent

Page 1 forward 2922 Page3 Page4

forward

The <jsp:useBean> action has a scope attribute you use to specify the scope for the bean.
Here is an example:

<jsp:useBean id="userInfo" scope="request"
class="com.ora.jsp.beans.userinfo.UserInfoBean" />

The <jsp:useBean> action ensures that the bean already exists in this scope or that a new
one is created and placed in the specified scope. It first looks for a bean with the name
specified by the id attribute in the specified scope. If it already exists, for instance created by
a previously invoked <9 sp:useBean> action or by a servlet, it does nothing." If it can't find
it, it creates a new instance of the class specified by the class attribute and makes it
available with the specified name within the specified scope.

If you'd like to perform an action only when the bean is created, place the elements in the
body of the <jsp:useBean> action:

<jsp:useBean id="userInfo" scope="request"
class="com.ora.jsp.beans.userinfo.UserInfoBean" >
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

In this example, the nested <jsp:setProperty> action sets all properties to the values of
the corresponding parameters when the bean is created. If the bean already exists, the
<jsp:useBean> action body isn't evaluated. and the <jsp:setProperty> action isn't
executed.

"It actually does one thing when the bean already exist: associates the bean with a scripting variable. This is only
of interest if you use JSP scripting elements, so I save a discussion about this until Chapter 15.

125

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

The scope attribute can also be used with all JSTL actions that expose variables outside their
element bodies to designate where the variable should be created, as you will see later in this
chapter.

You can access a bean created by the <jsp:useBean> action as a variable in EL
expressions. Typically you just specify the variable name no matter which scope it's saved in,
for instance:

<c:out value="S${userInfo.userName}" />

In this case, the EL looks for the variable in all scopes in the order page, request, session, and
application. If it's important to locate a variable in a specific scope, you can use the implicit
variables representing the different scopes:

<c:out value="${pageScope.userInfo.userName}" />

<c:out value="${requestScope.userInfo.userName}" />
<c:out value="${sessionScope.userInfo.userName}" />
<c:out value="${applicationScope.userInfo.userName}" />

Each scope variable represents a collection (a java.util.Map) of all variables in that
scope, so with expressions like these, the EL looks for the variable only in the specified scope.

10.1.3 All Together Now

At this point, you have seen the two mechanisms needed to let multiple pages process the
same request: passing control and passing data. These mechanisms allow you to employ the
MVC design, using one page for request processing and business logic, and another for
presentation. The <jsp:forward> action can pass control between the pages, and
information placed in the request scope is available to all pages processing the same request.

Let's apply this to the User Info example. In Chapter 8, different output was produced
depending on whether or not the user input was valid. If the input was invalid, error messages
were added to inform the user of the problem. Even when the input was valid, however, the
form -- without error messages, of course -- was displayed.

No more of that. When we split the different aspects of the application into separate JSP pages
as shown in Figure 10-1, we also change the example so that the form is shown only when
something needs to be corrected. When all input is valid, a confirmation page is shown
instead.

Example 10-1 shows the top part of the userinfoinput.jsp page.

Example 10-1. Page for displaying entry form (userinfoinput.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>User Info Entry Form</title>
</head>
<body bgcolor="white">

126

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

<jsp:useBean id="userInfo"
scope="request"
class="com.ora.jsp.beans.userinfo.UserInfoBean"
/>

<form action="userinfovalidate.jsp" method="post">

The rest of the page is identical to the one used in Chapter 8. If you compare Example 10-1
with the JSP page used for bean-based validation in Chapter 8, the only differences are that
the userInfo bean is placed in the request scope (the scope attribute is set to request),
the <jsp:setProperty> action for capturing input is gone, and the form's action
attribute specifies the validation page instead of pointing back to the same page.

The validation page, userinfovalidate.jsp, is given in Example 10-2.

Example 10-2. Input validation page (userinfovalidate.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<jsp:useBean id="userInfo"

scope="request"

class="com.ora.jsp.beans.userinfo.UserInfoBean">
<jsp:setProperty name="userInfo" property="*" />
</jsp:useBean>

<c:choose>
<c:when test="${userInfo.valid}">
<jsp:forward page="userinfovalid.jsp" />
</c:when>
<c:otherwise>
<jsp:forward page="userinfoinput.jsp" />
</c:otherwise>
</c:choose>

This is the request processing page, which uses the bean to perform the business logic. Note
that there's no HTML at all in this page, only a taglib directive declaring the core JSTL
library and action elements. This is typical of a request processing page. It doesn't produce a
visible response message, it simply takes care of business and passes control to the
appropriate presentation page.

This example is relatively simple. First, a new userInfo bean is created in the request scope
by the <jsp:useBean> action, and its properties are set from the request parameters values
submitted from the form by the nested <jsp:setProperty> action, just as in Chapter 8. A
<c:choose> action element with nested <c:when> and <c:otherwise> actions test if
the input is valid, using the bean's valid property. The control is passed to the appropriate
View page depending of the result, using the <jsp: forward> standard action.

If the input is invalid, the control is passed back to the userinfoinput.jsp page. This time the
page continues the processing that originated in the userinfovalidatejsp page; the
<jsp:useBean> action finds the existing userInfo bean in the request scope, and its
properties are used to fill out the form fields and add error messages where needed.

If all input is valid, the control is instead passed to the userinfovalidjsp page shown in
Example 10-3 to present the "thank you" message.

127

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Example 10-3. Valid input message page (userinfovalid.jsp)

<html>
<head>
<title>User Info Validated</title>
</head>
<body bgcolor="white">

Thanks for entering valid information!

</body>
</html>

This page tells the user all input was correct. It consists only of template text, so this could
have been a regular HTML file. Making it a JSP page allows you to add dynamic content later
without changing the referring page, however. The result of submitting valid input is shown in
Figure 10-3.

Figure 10-3. The valid input message page

22110 =10] =]
Fie Ede Yiew Swach Go PBoclmwtr Tads Halp Debug W

'\-)3 o G & [ttt i | (Caamh] . St

i . Fine g 1t vralid teFrsree ot
| hanks for enterine valhid informati

_I =2 2 A o Dooment Done il 32 o) S

Let's review how placing the bean in the request scope lets you access the same bean in all
pages. The user first requests the userinfoinput.jsp page (Example 10-1). A new instance of
the userInfo bean is created in the request scope. Because its properties have no values,
all form fields are empty at this stage. The user fills out the form and submits it, as a new
request, to the userinfovalidate.jsp (Example 10-2) page. The previous bean is then out of
scope, so this page creates a new userInfo bean in the request scope and sets all bean
properties based on the form field values. If the input is invalid, the <jsp: forward> action
passes the control back to the userinfoinput.jsp page. Note that we're still processing the same
request that initially created the bean and set all the property values. Since the bean is saved in
the request scope, the <jsp:useBean> action finds it and uses it to generate appropriate
error messages and fill out the form with any values already entered.

10.2 Sharing Session and Application Data

The request scope makes data available to multiple pages processing the same request. But in
many cases, data must be shared over multiple requests.

Imagine a travel agency application. It's important to remember the dates and destination
entered to book the flight so that the customer doesn't have to reenter the information when
it's time to make hotel and rental car reservations. This type of information, available only to
requests from the same user, can be shared through the session scope.

Some information is needed by multiple pages independent of who the current user is. JSP

supports access to this type of shared information through the application scope. Information
saved in the application scope by one page can later be accessed by another page, even if the

128

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

two pages were requested by different users. Examples of information typically shared
through the application scope are database connection pool objects, information about
currently logged-in users, and cache objects that avoid unnecessary database queries for data
that is the same for all users.

Figure 10-4 shows how the server provides access to the two scopes for different clients.

Figure 10-4. Session and application scopes

Cient 1
...... a ?E?f?ﬁ.’:’f’_.’._.,__ Server e S@SSTON T
' .‘.
Cifent 2 g S SRR "
i - i
sessionifd : H +
.......... i L e SeSSi0N 2
(ifent 1
Server
o
(iant 2 P iffran s s
i -

The upcoming examples in this chapter will help you to use the session and application
scopes.

10.2.1 Session Tracking Explained

Keeping track of which requests come from the same user isn't as easy as it may look. As
described in Chapter 2, HTTP is a stateless, request-response protocol. What this means is
that the browser sends a request for a web resource; the web server processes the request and
returns a response. The server then forgets this transaction ever happened. So when the same
browser sends a new request; the web server has no idea that this request is related to the
previous one. This is fine as long as you're dealing with static files, but it's a problem in an
interactive web application.

There are two ways to solve this problem, and they have both been used extensively for web
applications with a variety of server-side technologies. The server can either return all
information related to the current user (the client state) with each response and let the browser
send it back as part of the next request, or it can save the state somewhere on the server and

129

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

send back only an identifier that the browser returns with the next request. The identifier is
then used to locate the state information saved on the server.

In both cases, the information can be sent to the browser in one of three ways:
e Asacookie
e Embedded as hidden fields in an HTML form
e Encoded in the URLs in the response body, typically as links to other application
pages (this is known as URL rewriting)

Figure 10-5 outlines these methods.

130

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Figure 10-5. Client state information transportation methods

Browser Server

(% ORELLY

HTTR/ 1.0 200 0K
Set-cookie: sidexf23ad

(aokie GET /next.jsp HTTP/1.0
method Cookie: sid=xfziad

HTTR/1.0 200 OK

shtmls

«form action=next.jsp method=POST>
cinput typeshidden
nasie=sid value=xf2iads

</html>

Hidder form POST /mext.jsp HTTP/1.0

ffetd methad
sid=xf23ad

HTTRP/1.0 200 0K
chtml s

ca hrefenext. jsp;sidexf23ads
Hext pagec/a»

;}Html>

request

URL rewniting GET /next.jspisidexf23ad HTTP/1.0
method

A cookie is a name/value pair that the server passes to the browser in a response header. The
browser stores the cookie for the time specified by the cookie's expiration time attribute.
When the browser sends a request to a server, it checks its "cookie jar" and includes all
cookies it has received from the same server (that have not yet expired) in the request headers.
Cookies used for state management don't have an expiration time and expire as soon as the
user closes the browser. Using cookies is the easiest way to deal with the state issue, but some
browsers don't support cookies. In addition, a user may disable cookies in a browser that does
support them because of privacy concerns. Hence, we can't rely on cookies alone.

131

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

If hidden fields in an HTML form are used to send the state information to the browser, the
browser returns the information to the server as regular HTTP parameters when the form is
submitted. When the state information is encoded in URLs, it's returned to the server as part
of the request URL path, for instance when the user clicks on an encoded link.

Sending all state information back and forth between the browser and server isn't efficient, so
most modern server-side technologies keep the information on the server and pass only an
identifier between the browser and the server. This is called session tracking; all requests
from a browser that contains the same identifier (session ID) belong to the same session, and
the server keeps track of all information associated with the session.

JSP hides all details of cookie-based session tracking and supports the URL rewriting variety
with a bit of help from the page author. In addition, the specification allows a container to use
the session mechanism built into the Secure Socket Layer (SSL), the encryption technology
used by HTTPS. SSL-based session tracking is currently not supported by any of the major
servlet containers, but all of them support the cookie and URL rewriting techniques. No
matter which mechanism is used, session data is always available to JSP pages through the
session scope.” Information saved in the session scope is available to all pages requested by
the same browser during the lifetime of a session.

A session starts when the browser makes the first request for a JSP page in a particular
application. The application can explicitly end the session (for instance when the user logs out
or completes a transaction), or the JSP container can end it after a period of user inactivity
(the default value is typically 30 minutes after the last request). Note that there's no way for
the server to tell if the user closes the browser, because there's no permanent connection
between the browser and the server, and no message is sent to the server when the browser
disappears. Still, closing the browser usually means losing the session ID; the cookie expires,
or the encoded URLs are no longer available. So when the user opens a browser again, the
server can't associate the new request with the previous session, and therefore creates a new
session. However, all session data associated with the previous session remains on the server
until the session times out.

10.2.2 Counting Page Hits

A simple page counter can be used to illustrate how the scope affects the lifetime and reach of
shared information. The difference between the session and application scopes becomes
apparent when you place a counter in each scope. Consider the page shown in Example 10-4.

Example 10-4. A page with counter beans (counter1.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>Counter page</title>
</head>
<body bgcolor="white">

? Unless the page directive session attribute is set to false -- see Appendix A for details.

132

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

o)

%$—-- Increment counters --%>

<c:set var="sessionCounter" scope="session"
value="${sessionCounter + 1}" />

<c:set var="applCounter" scope="application"
value="${applCounter + 1}" />

<hl1>Counter page</hl>

This page has been visited
<c:out value="${sessionCounter}" />
 times within the current session, and
<c:out value="${applCounter}" />
 times by all users since the application was started.
</body>
</html>

In Example 10-4, JSTL <c:set> actions increment counters in the session and application
scopes. Note how each counter variable is placed in a specific scope using the scope
attribute. The variable placed in the session scope is found every time the same browser
requests this page, and therefore counts hits per browser. The application scope variable, on
the other hand, is shared by all users, so it counts the total number of hits for this page. If you
run this example, you should see a page similar to Figure 10-6.

Figure 10-6. A page with session and application page hit counters

Enunies pagn - Mezdla {Huald 10 20001 22106] RaRE =[] =
Eh E& Wiam Sesch Go Bostnsks Datki Hew Desg QA
" RJQ & 3) [e mcsner s Uzamer i | [Fafiemch | | “3g
=

Counter page

This page has been visited § tine s within the cwrent session, ad 9 tones by all viers since the appbcation was stared

o B % B o Document Done {11 wect] e

The first time you access the page, none of the counter variables exist, so the <c:set>
actions create them and set them to 1 (the EL interprets a missing variable as 0 when it's used
in an arithmetic operation). As long as you use the same browser, the session and application
counters stay in sync. If you exit your browser and restart it, however, a new session is
created when you access the first page. The session counter starts from 1 again but the
application counter takes off from where it was at the end of the first session.

Note that the counter variables are stored in memory only, so if you restart the server, both
counters are reset.

133

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Sessions and Multiple Windows

Even though session tracking lets an application recognize related requests, there's
still one problem. This problem is related to the server's lack of knowledge of the
client, and doesn't become obvious until you start testing an application that depends
on session information. Consider what happens if you open two browser windows
and start accessing the same web application. Will each window be associated with
its own session, or will they share the same session? Unfortunately there's not a clear
answer. And it doesn't matter if the server-side logic is implemented as servlets, JSP,
ASP, CGI, or any other server-side technology.

The most commonly used browsers, Netscape Navigator and Microsoft Internet
Explorer (IE), both let you open multiple windows that are actually controlled by the
same operating system process. Older versions of IE (before Version 5) can be
configured so that a separate process controls each window instead, and on
operating systems other than Windows, you can do this with any browser. When
each window runs in its own process, it's easy to answer the question: each window
is associated with its own session. It's only when one process controls multiple
windows that it gets a bit tricky; in this case, the answer depends on whether URL
rewriting or cookies are used for session tracking.

When URL rewriting is used, the first request to the application from one window
doesn't include a session ID, because no response with the session ID has been
received yet. The server sends back the new session ID encoded in all URLs in the
page. If a request is then submitted from the other window, the same thing happens;
the server sends back a response with a new session ID. Hence, in this scenario each
window is associated with a separate session.

If cookies are used to pass the session ID, the reverse is true. The first request
submitted from one window doesn't contain a session ID, so the server generates a
new ID and sends it back as a cookie. Cookies are shared by all windows controlled
by the same process. When a request is then made from the other window, it
contains the session ID cookie received as a result of the first request. The server
recognizes the session ID and therefore assumes that the request belongs to the same
session as the first request; both windows share the same session.

There's not much you can do about this. If you want each window to have its own
session, most servers can be configured to always use the URL rewriting method for
session tracking. But this is still not foolproof. The user can open a new window
using the mouse pop-up menu for a link (with the session ID encoded in the URI)
and ask to see the linked page in a new window. Now there are two windows with
the same session ID anyway. The only way to handle this is, unfortunately, to
educate your users.

10.2.3 URL Rewriting

As I mentioned earlier, the session ID needed to keep track of requests within the same
session can be transferred between the server and the browser in a number of different ways.
One way is to encode it in the URLs created by the JSP pages. This is called URL rewriting.

134

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

It's an approach that works even if the browser doesn't support cookies (perhaps because the
user has disabled them). A URL with a session ID looks like this:

counter2.jsp;jsessionid=be8d691ddb4128be093fdbdedd5be54e00

When the user clicks on a link with an encoded URL, the server extracts the session ID from
the request URI and associates the request with the correct session. The JSP page can then
access the session data in the same way as when cookies keep track of the session ID, so you
don't have to worry about how it's handled. What you do need to do, however, is tell the JSP
container to encode the URL when needed. To see how it's done, let's add HTML links in the
counter page -- one link without rewriting and one with. Example 10-5 shows a counter page
with this addition.

Example 10-5. A page with links, with and without URL rewriting (counter2.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>Counter page</title>
</head>
<body bgcolor="white">

<%-- Increment the counter --%>
<c:set var="sessionCounter" scope="session"
value="${sessionCounter + 1}" />

<hl>Counter page</hl>

This page has been visited

<c:out value="S${sessionCounter}" />
 times within the current session.
<p>

Click here to load the page through a
regular link.
<p>
Click here to load the page through an
<a href="<c:url value="counter2.jsp" />">encoded link.
</body>
</html>

The only differences compared to Example 10-4 are that only the session counter is used and
that links back to the same page have been added.

The <a> element's href attribute value for the second link is converted using the JSTL
<c:url> action, described in Table 10-3. If the container has received a session ID cookie
with the request for the page, the action adds the URL untouched to the response. But for the
first request in a session and for requests from a browser that doesn't support cookies or with
cookie support disabled, this action adds a rewritten URL, with the session ID added to the
URL as shown earlier.

135

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Table 10-3. Attributes for JSTL <c:url>

Attribute |Java [Dynamic value o .
Description

name type |accepted

e ciring IWes Mandatory. An absolute URL, or a context- or page-
relative path to encode.

omient ciring Nes Optlonal.‘ The context path for the a‘lppl.lcatlon, if the
resource is n't part of the current application.

. Optional. The name of the variable to hold the encoded

var string [No
URL.
Optional. The scope for the variable, one of page,

scope string |No request, session, or application. page is the
default.

The <c:url> action also encodes query string parameters defined by nested <c:param>
actions (see Table 10-4) according to the syntax rules for HTTP parameters:

<c:url value="product.jsp">

<c:param name="id" value="${product.id}" />
<c:param name="customer" value="Hans Bergsten" />
</c:url>

Recall that all special characters, such as space, quote, etc., in a parameter value must be
encoded. For instance, all spaces in a parameter value must be replaced with plus signs. When
you use the <c:param> action, it takes care of all encoding for the parameters, but in the
rare event that the URL specified as the <c:url> value attribute contains special
characters, you must replace them yourself. The encoded URL created by the action for this
example looks something like this:

product.jsp;jsessionid=be8d691ddb4128bel?id=3&customer=Hans+Bergsten

Here, the session ID and the request parameters are added, and encoded if needed (the space
between "Hans" and "Bergsten" is replaced with a plus sign).

If you're sure that the parameter values never contain special characters that need encoding (or
are easy to encode manually in a static value), you can include them as a query string in the
<c:url> value instead of using nested <c : param> actions:

<c:url value="product.jsp?id=${product.id}&customer=Hans+Bergsten">

Table 10-4. Attributes for JSTL <c:param>

Attribute |Java Dynamic value o e
Description
name type accepted
name string |Yes Mandatory. The parameter name.
‘ Mandatory, unless the value is provided as the
value String S(CS .
body instead. The parameter value.

If you want to provide session tracking for browsers that don't support cookies, you must use
the <c:url> action to rewrite all URL references in your application: in <a> tags, <form>
tags, and <frameset> tags. This means all pages in your application (or at least all pages

136

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

with references to other pages) must be JSP pages, so that all references can be dynamically
encoded. If you miss one single URL, the server will lose track of the session.

I recommend that you spend the time to add <c:url> actions for all references up front,
even if you know that all your current users have browsers that support cookies. One day you
may want to extend the user base and may lose control over the browsers they use. It's also
common that users disable cookies in fear of Big Brother watching. Yet another reason to
prepare for URL rewriting from the beginning is to support new types of clients that are
becoming more and more common, such as PDAs and cell phones. Cookie support in these
small devices isn't a given.

Besides URL encoding, the <c:url> action also converts a context-relative path into a
server-relative path, suitable for use in an HTML element. What this means is that all you
have to do to refer to a file that's located in a top-level directory for the application from an
HTML element is to use <c:url> to convert it to a path the browser interprets correctly.
Here's how you can add an image located in the /images directory for the application from any
JSP page, no matter how deep in the directory structure it's located:

<img src="<c:url value="/images/logo.gif" />">

For an application installed with the context path /example, the result of processing this
snippet is:

Note how the context path has been prepended to the context-relative path specified as the
attribute value. A browser needs this type of server-relative path because it doesn't know
anything about contexts or how to handle context-relative paths; these are concepts only the
container knows about.

10.3 Online Shopping

Now let's look at a more useful example; an online shopping site. Besides showing you
examples on how the session and application scopes can be used effectively in a larger
application, this example also introduces other useful tools, such as JSTL actions for number
formatting and redirection and EL syntax for getting collection values based on keys
determined at runtime.

The application consists of three pages. The main page lists all available products. Each
product is linked to a product description page, where the product can be added to the
shopping cart. A product is added to the shopping cart by a request processing page. The main
page with the product list is then displayed again, but now with the current contents of the
shopping cart as well, as shown in Figure 10-7.

137

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Figure 10-7. The product list and the contents of the shopping cart

" Product Calalog - Mozilla (Build 05 20001221 b6} fEi =0 x|
Fies Ect Yeew Seach Lo Bootmaks Tasks Help Debug Q&
" k')j J |J __J [%e g o adbhose S0B0Voaa ok Deatalog jio | [Cy Smarch | SR
Product Catalog
Flaase salect a book fram cur catalog to read moce about it and decids i wou likes to purchase a copy
& Java Z 221 Frdframmiing
& T e Pages
® Jawa In & Muts
Your shoppmg cast contans the follownng ib=ms
Tawa Serdlet Prograrming §32.95
JawaServer Pages £32.95
Tava In & Mitshel £32.35
Total: £98.85
[&3 9F ER & | Document Done 017 secs X
Two beans are used to keep track of the products:

the com.ora.jsp.beans.shopping.CatalogBean contains all available products, and
the com.ora.jsp.beans.shopping.CartBean represents one user's shopping cart.
Each product in the catalog is represented by a ProductBean. Table 10-5, Table 10-6 and
Table 10-7 show all the properties for the beans.

Table 10-5. Properties for com.ora.jsp.beans.shopping.CatalogBean

Proper ..
perty Java type Access|Description
name
productList |com.ora.jsp.beans.shopping.ProductBean|]|Read A list of all prOduCtS n
the catalog
A Map, keyed on product
productsById |java.util.Map Read |(ID, with all
ProductBean instances
Table 10-6. Properties for com.ora.jsp.beans.shopping.CartBean
Proper . L.
operty Java type Access|Description
name
productList |com.ora.jsp.beans.shopping.ProductBean[]|Read A list of all prOdUCts n
the cart
product com.ora.jsp.beans.shopping.ProductBean Write A?‘?S the pI’OdUCt to the
ca
R loat Read The tota} price for all
products in the cart

138

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Table 10-7. Properties for com.ora.jsp.beans.shopping.ProductBean

Property name Java type Access Description

id String Read The unique product ID

name String Read The product name

price float Read The product price

descr String Read A description of the product

The ProductBean objects are created by the CatalogBean when it's created. Figure 10-8
shows how the beans are related.

Figure 10-8. Application and session scope beans

CartBeans

CatalogBean
/.-'

The CatalogBean and the ProductBean objects are placed in the application scope,
because all users share the same product catalog. To keep track of each user's purchases,
separate shopping carts must be used. One CartBean instance per user is therefore placed in
the user's unique session scope. When a user picks a product from the catalog, a reference to
the corresponding ProductBean is added to the user's CartBean.

The main page for this application is shown in Example 10-6.

Example 10-6. A page with a list of products (catalog.jsp)

<%@ page language="java'" contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/Jjstl/fmt" %>

<html>
<head>
<title>Product Catalog</title>
</head>
<body bgcolor="white">
<hl>Product Catalog</hl>

Please select a book from our catalog to read more about it and
decide if you like to purchase a copy:

<jsp:useBean id="catalog" scope="application"

class="com.ora.jsp.beans.shopping.CatalogBean"

/>

139

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

o)

Generate a list of all products with links to the product page.
-=%>

<c:forEach items="${catalog.productList}" var="product">
<c:url var="productURL" value="product.jsp">
<c:param name="id" value="${product.id}" />
</c:url>

<a href="<c:out value="${productURL}" escapeXml="false" />">
<c:out value="§${product.name}" />
</c:forEach>

<jsp:useBean
id="cart" scope="session"
class="com.ora.]jsp.beans.shopping.CartBean"
/>
<%-- Show the contents of the shopping cart, if any --%>
<c:if test="${'empty cart.productList}">
Your shopping cart contains the following items:
<p>
<table border=0>
<c:forEach items="${cart.productList}" var="product">
<tr>
<td><c:out value="${product.name}" /></td>
<td>
<fmt: formatNumber value="${product.price}"
type="currency" />
</td>
</tr>
</c:forEach>
<tr><td colspan=2><hr></td></tr>
<tr>
<td>Total:</td>
<td>
<fmt: formatNumber value="${cart.total}"
type="currency" />
</td>
</tr>
</table>
</c:if>
</body>
</html>

The <jsp:useBean> action near the top of Example 10-6 creates an instance of the
CatalogBean the first time a user requests the page and saves it under the name catalog.
Since the bean is placed in the application scope, all users will then share this single instance.

The <c: forEach> action loops through the list and generates an HTML list item element
for each product. The EL expression used as the items attribute value retrieves the
catalog bean's property that contains a list of all products in the catalog, named
productList (an array of ProductBean objects). The var attribute is set to product,
so we can use product as a variable name in the action element body.

The body of the <c:forEach> action is evaluated once per product. The action body
contains a mixture of template text and actions to generate an HTML list item element for
each product with a link to another page, using the product name as the link text. Let's look at
how the link is generated:

140

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

<c:url var="productURL" value="product.jsp">
<c:param name="id" value="§${product.id}" />
</c:url>

<a href="<c:out value="${productURL}" escapeXml="false" />">
<c:out value="${product.name}l" />

First, the <c:url> action creates the URL for the link by adding the id parameter specified
by the nested <c: param> action to the page name and rewriting the resulting URL if cookies
aren't supported. Next, a <c:out> action adds the URL as the HTML link's href attribute
value. Note that the escapeXml attribute is set to false. As you may recall from Chapter 8,
this means that special characters in the value should be left as-is instead of being converted
to character entities, which is the default. Disabling the conversion is important when you use
<c:out> to add a URL, because otherwise, ampersands used to separate parameters in the
URL get corrupted. In this example the URL contains only one parameter, so it works fine
even if conversion is enabled, but you should disable it anyway to avoid problems if you need
to add another parameter later. To add the link text, another <c: out> action is used with an
EL expression that gets the product's name.

After the code in Example 10-6 for generating the product list, you see almost identical code
for generating a list of the current contents of the shopping cart. First, the <Jjsp:useBean>
action places the cart bean in the session scope, as opposed to the catalog bean, which is
placed in the application scope. This means that each user gets a unique shopping cart that
remains on the server for the duration of the session, while they all share the same catalog.
The part of the page that deals with the shopping cart contents is enclosed in a <c:if>
action, so it's processed only if the cart bean's productList property contains a nonempty
array; in other words, only when there's at least one product in the cart.

10.3.1 Number Formatting

Unless the shopping cart is empty, a second <c:forEach> action generates a list of the
contents as an HTML table with the name and price of each product. A thing to note here is
the use of the <fmt : formatNumber> action:

<fmt:formatNumber value="${product.price}"
type="currency" />

This is an action from the JSTL I18N formatting library, declared by the second taglib
directive at the top of the page. It formats the number specified by the value attribute as
defined by other attributes, such as the type attribute used here. The currency type tells it
to format the number according to default rules for currency values. Other attributes not used
here let you define specific rules for the number of decimals to show, where to put number-
grouping characters, prefix and suffix, etc. The number is formatted according to the rules for
a specific geographical, political, or cultural region, known as a locale. A locale defines
things such as which characters to use as a decimal separator, thousand grouping, and
currency symbol. Locales and all JSTL formatting actions are discussed in detail in Chapter
13, but to give you an idea of how formatting varies between regions, here's an example of the
number 10000.00 formatted as currency for USA, Sweden, and Italy:

141

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

USA

$10,000.00
Sweden

10 000,00 kr
Italy

L. 10 000

In Example 10-6, the <fmt : formatNumber> action formats the price information for each
product and the total for everything in the cart.

10.3.2 Using a Request Parameter as an Index

A link to a description page for each product is generated using the <c: forEach> action in
the main page, shown in Example 10-6. The link includes the request parameter id,
specifying the product to display information about. When the user clicks on one of the links,
the page shown in Example 10-7 is invoked.

Example 10-7. The product description page (product.jsp)

<%@ page language="java'" contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>Product Description</title>
</head>
<body bgcolor="white">

<jsp:useBean id="catalog" scope="application"
class="com.ora. jsp.beans.shopping.CatalogBean"

/>
<%-- Get the specified ProductBean from the catalog --%>
<c:set var="product" value="${catalog.productsById[param.id]}" />
<hl>
<c:out value="§{product.name}" />
</hl>

<c:out value="${product.descr}" />

<p>

<c:url var="addtocartURL" value="addtocart.jsp">
<c:param name="id" value="${product.id}" />

</c:url>

<a href="<c:out value="${addtocartURL}" escapeXml="false" />">
Add this book to the shopping cart

</body>
</html>

A <jsp:useBean> action at the top of Example 10-7 makes the catalog bean available to

the page. Since the same action is used in the catalog.jsp page to save the catalog bean in the
application scope, it may seem redundant to have it in this page as well. In the normal case, it

142

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

is. But users may bookmark a page for a specific product and go directly to this page. If the
container has been restarted and no one has loaded the catalog.jsp page yet, the
<jsp:useBean> action makes sure a fresh bean is created in the application scope so the
other actions in this page can use it. If the bean already exists, the <jsp:useBean> action
uses the existing bean instead, so no harm is done. This is an approach you should consider
for all pages that can be bookmarked; make sure all beans used in the page are initialized even
in the unusual cases.

Next, a <c:set> JSTL action saves a reference to the ProductBean corresponding to the
product ID specified by the id parameter value, to make it easier to access information about
the product later in the page. As you may recall from Chapter 8, request parameter values can
be accessed as a property of the implicit param variable in an EL expression. What's new in
this example is that the parameter value is used to pick a specific element from a collection,
using the EL [element id] syntax. In this example, the productsById property of the
catalog bean is of type java.util.Map, containing all products in the catalog. A Map is
a collection type that provides access to individual elements through an identifier known as a
key. With the EL, you can specify the key in two ways:

${myMap.myKey}
${myMap [myKey] }

The first syntax, using a dot to separate the Map variable from the key value, works when you
know exactly which key value to use. In other words, the key is a static string. The second
syntax must be used when the key value is determined at runtime using another variable, such
as the param. id construct used in Example 10-7. You can use the second syntax even when
the key is a static string, if you specify it as a string literal:

${myMap ['myKey']}

If you're familiar with JavaScript, you probably recognize the two ways to access data from a
collection with key/value pairs. If so, you probably guessed that the [] operator can be used
also to access elements of collections of indexed values (such as a java.util.List ora
Java array):

${myList[0]}
${myList [myVarWithANumericValue]}

For an indexed collection, the value within the brackets must be a numeric literal or a
subexpresson that represents a numeric value.

The remainder of Example 10-7 uses actions we have already discussed: <c:out> actions to
add the product name and description (represented by properties of the bean referenced by the
product variable) to the page, and <c:url> to create the URL rewritten link to the request
processing page that adds the product to the shopping cart. The result is shown in Figure 10-9.

143

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Figure 10-9. The product description page

Penduct Description - Masilla [Budd 10: 2001122186) i =10 =]
. Eis Edi Yiew Eeawh Go Heokmaks Tasks Help Debug G4

GG J LJ J [Wi Mheeabnil D030 ek Lsssckact i k=100 | (5 Seaich | iy m
=

JavaServer Pages
Fl Lean how bo develop a JSP based web apphcaten
k ti the shoppas cart

0 Gy BN o | Doouvent Done (247 seos] 1= gt

The request processing page is shown in Example 10-8.

Example 10-8. Adding a product to the shopping cart (addtocart.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<jsp:useBean id="catalog" scope="application"
class="com.ora.jsp.beans.shopping.CatalogBean"

/>
<%-- Get the specified ProductBean from the catalog --%>
<c:set var="product" value="${catalog.productsById[param.id]}" />

<jsp:useBean

id="cart"

scope="session"

class="com.ora.jsp.beans.shopping.CartBean"
/>

<%-- Add the product to the cart --%>
<c:set target="${cart}" property="product" value="${product}" />

<c:redirect url="catalog.jsp" />

Since this is a request processing page, it doesn't contain any HTML. The <jsp:useBean>
actions make sure the catalog and cart beans are available, for the same reason as in
Example 10-7. The first <c:set> action saves a reference to the requested product in a
variable named product, just as in the product.jsp page.

A JSTL <c:set> action with a couple of attributes I skipped over earlier adds the product to
the cart by setting the cart bean's product property to the selected product.

The reason the <c:set> action is used instead of the standard <jsp:setProperty>
action described in Chapter 8 is that the standard action doesn't accept an EL expression
value. The <c:set> action comes to the rescue and lets you set the property specified by the
property attribute in the bean identified by the target attribute to the EL expression
specified by the value attribute. You can also use these two attributes to add elements to a
Map object:

<c:set target="${myMap}" property="theKey" value="${avValue}" />

As you may have noticed by now, as far as the EL is concerned, a Map and a bean are just two
ways to represent the same concept; a collection of values identified by a name. It's up to the

144

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

Java programmer who makes objects available for use in a JSP page to pick the most
appropriate implementation on a case-by-case basis.

When the product has been added to the cart, the application needs to redisplay the catalog
page to show the updated cart contents.

10.3.3 Redirect Versus Forward

There are two ways you can invoke another page: redirecting or forwarding. Forwarding was
used in Example 10-2 to display an appropriate page depending on the result of the user input
validation. In Example 10-8, redirection is used to display the catalog page after adding a new
product to the cart. The <c:redirect> JSTL action, described in Table 10-8, sends a
redirect response to the browser with the new location defined by the url attribute. If URL
rewriting is used for session tracking, the URL is encoded with the session ID. If the body of
this action contains <c:param> actions, described in Table 10-4, each parameter is added to
the URL as query string parameters, encoded according to rules in the HTTP specification.

Table 10-8. Attributes for JSTL <c:redirect>

Attribute |Java |Dynamic value .
Description

name type accepted

- siring [Yes Mandatory. An absolute URL, or a context- or page-
relative path.

ontext siring |Ves Optlonal.. The context path for the apphpa‘uon, if the
resource isn't part of the current application.

There's an important difference between a forward and a redirect. When you forward, the
target page is invoked through an internal method call by the JSP container; the new page
continues to process the same request and the browser isn't aware that more than one page is
involved. A redirect, on the other hand, means that the first page tells the browser to make a
new request to the target page. The URL shown in the browser is therefore changed to the
URL of the new page when you redirect, but stays unchanged when you use forward. A
redirect is slower than a forward, since the browser has to make a new request. Also, because
it results in a new request, request scope variables are no longer available after a redirect.

So how do you decide if you should use forward or redirect? To a large extent it's a matter of
preference. I look at it like this: forwarding is always faster, so that's the first choice. But
because the URL in the browser refers to the start page even after the forward, I ask myself
what happens if the user decides to reload the start page (or just resize the window; this often
reloads the page automatically). In this example, the start page is the page that adds an item to
the shopping cart. I don't want it to be invoked again on a reload, so I redirect to the page that
displays the catalog and shopping cart content instead. No harm is done if the user reloads this

page.
10.4 Memory Usage Considerations

You should be aware that all objects you save in the application and session scopes take up
memory in the server process. It's easy to calculate how much memory is used for the

application scope because you have full control over the number of objects you place there.
But the total number of objects in the session scope depends on the number of concurrent

145

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

sessions, so in addition to the size of each object, you also need to know how many
concurrent users you have and how long a session lasts. Let's look at an example.

The CartBean used in this chapter is small. It stores only references to ProductBean
instances, not copies of the beans. An object reference in Java is 8 bytes, so with three
products in the cart we need 24 bytes. The java.util.Vector object used to hold the
references adds some overhead, say 32 bytes. All in all, we need 56 bytes per shopping cart
bean with three products.

If this is a site with a modest amount of customers, you may have 10 users shopping per hour.
The default timeout for a session is 30 minutes, so let's say that at any given moment, you
have 10 active users and another 10 sessions that aren't active but have not timed out yet. This
gives a total of 20 sessions times 56 bytes per session, a total of 1,120 bytes. In other words,
roughly 1 KB -- nothing to worry about.

Now let's say your site becomes extremely popular, with 2,000 customers per hour. Using the
same method to calculate the number of concurrent sessions as before, you will have 4,000
sessions at 56 bytes; a total of roughly 220 KB -- still nothing to worry about. However, if
you store larger objects in each session, say the result of a database search with an average
size of 10 KB, it corresponds to roughly 40 MB for 4,000 sessions. A lot more but still not
extreme, at least not for a site intended to handle this amount of traffic. However, it should
become apparent that with that many users, you have to be a bit careful with how you use the
session scope.

Here are some things you can do to keep the memory requirements under control:

o Place only objects that really need to be unique for each session in the session scope.
In the shopping cart example, each cart contains only references to the product beans
(not copies of the beans), and the catalog bean and the product beans are shared by all
users.

o Set the timeout period for sessions to a lower value than the default. If you know it's
rare that your users leave the site for 30 minutes and then return, use a shorter period.
You can change the timeout for all sessions in an application through the application's
deployment descriptor (see Appendix F), or by calling
session.setMaxInactiveInterval () (see Appendix D) in a custom action,
bean, or servlet to change it for an individual session.

o Provide a way to end the session explicitly. A good example is a logout function, or
invalidation of the session when something is completed (for instance when an order
form is submitted). In a JSP page, you can use the <ora:invalidateSession>
custom action described in Chapter 12 to invalidate the session. In a servlet or other
custom code, you can use the HttpSession invalidate() method, see
Appendix D. Invalidating a session makes all objects available for garbage collection
(the term used for when the Java runtime removes unused objects to conserve
memory).

We have covered a lot of ground in this chapter, so lets recap the key points:
e The scope concept gives you full control over the lifetime and reach of shared

information at a convenient abstraction level. However, resist the temptation to keep
too much information around in the session scope.

146

Chapter 10. Sharing Data Between JSP Pages, Requests, and Users

e Action elements for passing control between pages, such as the standard
<jsp:forward> action and the JSTL <c:redirect> action, allow you to allocate
different roles to different pages, and the JSTL <c:url> action can be used to
provide support for cookie-less session tracking.

The scope abstraction and the actions together make it possible to develop JSP-based
applications that are easy to maintain and extend.

147

Chapter 11. Accessing a Database

Chapter 11. Accessing a Database

Almost all the web applications that you see on the Internet access a database. Databases store
customer information, order information, product information, even discussion forum
messages -- in short, all information that needs to survive a server restart and is too complex
to handle in plain-text files.

There are many types of databases used in the industry today. However, relational databases
are by far the most common. A relational database uses tables to represent the information it
handles. A table consists of rows of columns, with each column holding a single value of a
predefined data type. Examples of these data types are text data, numeric data, dates, and
binary data such as images and sound. A specialized language called Structured Query
Language (SQL) is used to access the data. SQL is an ANSI standard and is supported by all
major database vendors.

Relational database engines come in all shapes and sizes, from simple one-person databases
with limited features, to sophisticated databases capable of handling large numbers of
concurrent users with support for transactions distributed over multiple servers and extremely
optimized search algorithms. Even though they all use SQL as the data access language, the
API used to execute SQL statements is different for each database engine. To help
programmers write code that's portable between database engines, the standard Java libraries
include an API called the Java Database Connectivity (JDBC) APIL. JDBC defines a set of
classes that can execute SQL statements the same way in any relational database.

The complexity of databases varies extensively. A database for an online discussion forum,
for instance, requires only one or two tables, while a database for a human resources system
may contain hundreds of related tables. In this chapter, we look at a set of JSTL database
actions you can use to build any type of database-driven web application. But if the database
is complex, you may want to use another approach: hiding the database behind application-
specific beans and custom actions, or moving all database processing to a servlet and using
JSP only to show the result. Both these approaches are discussed briefly at the end this
chapter and in more detail in Chapter 17, Chapter 18, and Chapter 23.

11.1 Accessing a Database from a JSP Page

JSTL includes a number of actions for database access to make it easy to develop simple
database-driven JSP applications. The actions provide the following features:

o Using a connection pool for better performance and scalability

e Supporting queries, updates, and inserts

e Handling the most common data-type conversions

e Supporting a combination of database operations in one transaction

Each action is introduced as it's used in the example in this chapter. In addition, you can find a
complete description of all the actions in Appendix B.

148

Chapter 11. Accessing a Database

11.1.1 Application Architecture Example

In this chapter, we build an employee register application. This application contains functions
for adding and changing employee information, as well as for looking up employees matching
a search criterion. The employee information is stored in a relational database and accessed
through the JSTL database access actions.

The employee registration part of the application contains the pages shown in Figure 11-1.

Figure 11-1. Employee registration pages

Client

- |

g
oF

A

N)
[l
EnterJsp valiclate. jsp stiarejsp confirmation,jsp
pighl forward O farward o) ol
L Matahase <_1

This example looks similar to the example from the previous chapter. The enter.jsp page
presents a form in which the user enters information about an employee. When the form is
submitted, it invokes the validate.jsp page, where all input is validated. If the input is invalid,
the request is forwarded back to the enter.jsp page to display error messages and the form
with all the values the user previously entered. The user can then correct the invalid values
and submit the form again. When all input is valid, the validate.jsp page forwards the request
to the store.jsp page where the information is stored in the database. Finally, the store.jsp
page redirects to the confirmation.jsp page, which displays the information actually stored in
the database as a confirmation to the user.

e view poge
3 proces page

Figure 11-2 shows the pages used to implement the employee search function.

149

Chapter 11. Accessing a Database

Figure 11-2. Employee search pages

Client
) g
& g %
& £ ?
[r)
search Bp firtd s ligt j&p delete jop
D O j forvard aman O
i
reeessemsranesssmssane e TERECE = rermmssnsrrsnsssssrrsnssnssrsamerst
I Ve e Dafobase +
) proces page

The search.html page is a regular HTML page with a form for entering the search criteria.
The user can enter a partial first name, last name and department name. Submitting the form
invokes the find.jsp page. Here the database is searched for employees matching the criteria
specified by the user, and the result is kept in the request scope. The find.jsp page forwards to
the list.jsp page, where the result is displayed. For each employee listed, the list.jsp page adds
a Delete button. Clicking on the Delete button invokes the delete.jsp page, removing the
employee information from the database. The delete.jsp then redirects to the find.jsp page, to
get an updated collection of employees matching the search criteria, and the find.jsp forwards
to list.jsp as before, to show the result after deleting the employee.

11.1.2 Table Example

If you develop a database-driven web application from scratch, you must first develop a
database schema. The database schema shows how the persistent information in the
application is modeled as a set of related tables. For a large application, this is a great deal of
work, and it's extremely important to find the right balance between flexibility and
performance of frequent queries. How database schemas are developed is beyond the scope of
this book, but there are plenty of other books available on this subject. Examples are C.J.
Date's classic and very academic An Introduction to Database Systems (Addison-Wesley),
and a book that's easier to read, Database Design for Mere Mortals: A Hands-On Guide to
Relational Database Design by Michael J. Hernandez (Addison-Wesley). In the event that
you're developing a web interface to an existing database, the schema development is already
taken care of, but you still need to study the schema to make sure you understand how all the
tables fit together.

The schema for the example in this chapter is simple. To store the employee information, we
need only the table described in Table 11-1.

150

Chapter 11. Accessing a Database

Table 11-1. Employee database table

Column name SQL data type Primary key?
UserName CHAR (Text) Yes
Password CHAR (Text) No
FirstName CHAR (Text) No
LastName CHAR (Text) No
Dept CHAR (Text) No
EmpDate DATE (Date/Time) No
EmailAddr CHAR (Text) No
ModDate TIMESTAMP (Date/Time) No

In a relational database, one column (or a combination of columns) can be marked as a
primary key. The primary key uniquely identifies one specific row in the table; no two rows
can have the same primary key. Here we use a column named UserName as the unique
primary key for the table. Each employee must therefore be assigned a unique username, just
like the username used to log into an operating system. As you will see in Chapter 12, the
username, combined with the password you also find in the Employee table, can be used for
application-controlled authentication. Assigning unique usernames can, however, be a
problem in a web application available to anyone on the Internet. Therefore, some
applications use a numeric code as the unique identifier instead, such as social security
number or a generated sequence number. This table is only an example of how to work with
databases in JSP, so we'll keep it simple.

The SQL data-type name within parentheses in Table 11-1 is the name used in the Microsoft
Access product, to help you create the tables in this commonly used database. This is by no
means an endorsement of the Access database for a database-driven web site. In fact, I
recommend that you don't use Access for a real application. It's a product that's intended as a
single-user database, and it doesn't work well with the number of accesses typical for a web
application. For a real site, you should use a more robust multiuser database such as Oracle,
Sybase, DB2, or Microsoft SQL Server. The only reason I use Access in this book when I
refer to a specific product is that it's a database you may already have installed. It's also easy
to use during development of an application. If you don't have a database installed, and you're
not ready to spend big bucks for one of the products just listed, there are plenty of other free
or inexpensive databases you can use. One example is MySQL from MySQL AB, a popular
database available at http://www.mysql.com/. Another is PostgreSQL, an open source
database available at http://postgresql.org/.

To run the example described in this chapter you must first create the table outlined in Table
11-1 in your database. How to do this varies between database engines, so you need to consult
the documentation for the database engine you use.

11.1.3 The DataSource Interface and JDBC Drivers

Before we get started with the examples, let's look at how to identify the database you want to
access. The JSTL actions can find this information in many different ways, to make the
simple scenario simple and the more complex ones possible. In all cases, though, they get
access to the database through an instance of a JDBC interface named
javax.sqgl.DataSource

151

Chapter 11. Accessing a Database

The DataSource interface is part of the Java 2 Standard Edition (J2SE) 1.4, and for prior
versions of the J2SE, it's available in the JDBC 2.0 Optional Package. To access a database, a
connection to the database must first be established. Opening a database connection is very
time-consuming. A nice thing with a DataSource is that it can represent something called a
connection pool. Connection pools are described in more detail in Chapter 23, but it's exactly
what it sounds like: a pool of database connections that can be shared by multiple clients.
With a connection pool, a connection to the database is opened once and stays open until the
application is shut down. When a database action needs a connection, it gets it from the pool
through the DataSource object and uses it to execute one or more SQL statements. When
the action closes the connection, the connection is returned to the pool where it can be picked
up by the next action that needs it.

In addition to the DataSource, the JDBC API contains other classes and interfaces that
allow a Java application to process SQL statements in a database-independent way. For each
specific database engine, an implementation of the interfaces defined by the JDBC API
translates the generic calls to a format understood by the engine. This implementation is
called a JDBC driver. Using different drivers that all provide the same interface allows you to
develop your application on one platform (for instance, a PC with an Access database), and
then deploy the application on another platform (for instance, a Solaris or Linux server with
an Oracle database).

At least in theory it does. SQL is unfortunately one of these standards that leave a few things
open, eagerly filled by different vendors' proprietary solutions. Examples include how to
handle embedded quotes in a string value, how to deal with the input and output of date and
time values, semantics for certain data types, and creation of unique numbers. The JSTL
actions take care of some of these, such as string quoting and date/time string format, so if
you use these actions and stick to ANSI SQL, you should be able to migrate from one
database to another without too much tweaking. However, you should always read your
database documentation carefully and try to stay away from proprietary features. Be prepared
to spend at least some time in transition when you need to move the application to another
database. You can find JDBC drivers for most database engines on the market, both
commercial and open source. If you can't get one from your vendor, Sun maintains a list of
third-party drivers at http://industry.java.sun.com/products/jdbc/drivers.

Okay, so how to create a DataSource instance and make it available to the JSTL actions? If
you need to access only one database, you can tell the JSTL actions all they need to know to
create a DataSource themselves, using a context parameter in the application's deployment
descriptor (the WEB-INF/web.xml file):

<web-app>

<context-param>
<param-name>
javax.servlet.jsp.jstl.sql.dataSource
</param-name>
<param-value>
jdbc:odbc:example, sun. jdbc.odbc.JdbcOdbcDriver, scott, tiger
</param-value>
</context-param>

</web-app>

152

Chapter 11. Accessing a Database

The example shows the type of context parameter value you must use for the JDBC-ODBC
Bridge driver included in the Java 2 SDK: sun.jdbc.odbc.JdbcOdbcDriver. This
driver can access databases that provide an ODBC interface but that have no direct JDBC
driver interface, as is the case for Microsoft Access. Sun recommends you not use the JDBC-
ODBC driver for a production application, but for development it usually works fine. When
you deploy your application, you should use a production-quality driver from your database
vendor or a third party.

The context parameter value contains four pieces of information separated by commas: a
JDBC URL, a JDBC driver class name, a database account name, and the account password.
If any of these parts contains a comma, you must escape it with a backslash.

The first part -- the JDBC URL -- identifies a specific database. Different JDBC drivers use
different URL syntax. All JDBC URLs starts with jdbc: followed by a JDBC driver
identifier, such as odbc: for the JDBC-ODBC bridge driver and mysqgl: for the most
commonly used MySQL driver. The rest of the URL identifies the database instance in the
driver-dependent way. For the JDBC-ODBC bridge driver, it's an ODBC Data Source Name
(DSN). If you use an Access database, you need to create a system DSN for the database
using the ODBC control in the Windows Control Panel, as shown in Figure 11-3. Note that
you must create a system DSN as opposed to a user DSN. The reason for this is that the web
server that executes your JSP pages usually runs as a different user account than the account
you use for development. If you specify a user DSN with your development account, the web
container will not be able to find it.

Figure 11-3. System DSN definition window

2x
Diata Sowce Name |E-xa'nple ok, i
Descriphion: [J5P Back examples]
Cancel
Database
Diatabase = \db\JSPEook\book mdb Hel
Sedect . | Lieate. . | Hepar... Compact .. |

System Database

+ Hong

(" Database:

—I Optiotias »

The second part -- the JDBC driver class name -- must be specified as a fully qualified class
name; in other words, the class name including the package name. You must install the driver
by placing its class files in a place the web container can find, typically in the application's
WEB-INF/Iib directory. If the driver is delivered as a ZIP file (as Oracle's JDBC drivers are,
for instance), you can still place it in the WEB-INF/lib directory if you change the file
extension from .zip to.jar.

The database account name and password defines the specific database account to use.

153

Chapter 11. Accessing a Database

All parts of the context parameter except the JDBC URL are optional. The driver class name
can only be left out if the class is loaded by some other part of the application, for instance by
a servlet or a listener. For a pure JSP application, you must always specify it. The account
name and password can be left out if you use a database that isn't protected by a username and
password, for instance an Access database used during development.

If you need to access more than one database, you must work a little bit harder since the
context parameter can only define one. During development, or for a simple prototype, you
can use the JSTL <sgl:setDataSource> action, described in Table 11-2.

Table 11-2. Attributes for JSTL <sql:setDataSource>

Attribute Dynamic o
Java type value Description
name
accepted
Optional. A data source. If specified
et aSource String S S as a String, it must be a JNDI path
javax.sqgl.DataSource or use the same format as the data
source context parameter.
Optional. The name of the JDBC
driver String Yes driver class used to access the
database.
. Optional. The JDBC URL for the
url String Yes
database.
Deer String Yes Optional. The database account
name.
pessword |string Yes Optional. The database account
password.
. Optional. The name of the variable
var String No
to hold the data source.
Optional. The scope for the data
ceope String No source, one of page, request,
session, or application. page
is the default.

The database information can be specified as the dataSource attribute value in the same
form as for the context parameter, or by with the url, driver, user and password
attributes. Use the var attribute to specify a name for the data source object, and optionally
its scope with the scope attribute. Here's an example, using the same database as in the
context parameter example:

<sgl:setDataSource var="example" scope="application"
driver="sun.jdbc.odbc.JdbcOdbcDriver"
url="7jdbc:odbc:example"
user="scott"
password="tiger"

/>

You must also tell the database access actions that need the data source which one to use
when you're not using the default one:

154

Chapter 11. Accessing a Database

<sgl:query

_n

var="empDbInfo"

dataSource="${example}"

sgl="SELECT * FROM Employee"
/>

The var attribute is actually optional for the <sqgl : setDataSource> action. If you omit it,
the data source is used as the default in the specified scope, in effect hiding the default data
source defined by the context parameter or a default set by another
<sgl:setDataSource> (or a servlet) in a "larger" scope. When a specific data source is
not supplied through the dataSource attribute, all JSTL database actions look for a default data
source in the order page, request, session and application scope, and finally the context
parameter. This setup, with a default that can be defined by both a context parameter and
scoped variables is called a configuration setting in the JSTL specification.

The DataSource created based on the context parameter information or by the
<sqgl:setDataSource> action doesn't represent a connection pool. These two techniques
are primarily intended for prototyping, and they are handy when you just want to quickly get a
simple example up and running. For the examples in this book, I have used the context
parameter to make it easy for you to run them with another driver and JDBC URL; just update
the value in the deployment descriptor to match your database and restart the web container.

For a production site, you should use a DataSource that represents a connection pool
instead. If you use a web container that supports the Java Naming and Directory Interface
(JNDI) API, you can register a DataSource with the container's naming service and specify
the JNDI path as the context parameter value, instead of specifying all the data needed to
create a DataSource:

<web-app>

<context-param>
<param-name>
javax.servlet.jsp.jstl.sql.dataSource
</param-name>
<param-value>
jdbc/Example
</param-value>
</context-param>

</web-app>

The dataSource attribute supported by all JSTL database actions also accepts a JNDI path.
Another alternative is to let a servlet or listener create the DataSource. I describe both the
JNDI and servlet or listener alternatives in detail in Chapter 23.

11.1.4 Reading and Storing Information in a Database
The first page the user loads to register an employee in the example application is enter.jsp.

This page, which contains a form for entering all information about an employee, is shown in
Figure 11-4.

155

Chapter 11. Accessing a Database

Figure 11-4. Employee information entry form

Fugdoy e Fnliy Feem - Moglla [Heshi 10 FETZ2T06) S =10 =i
Fi= Edt Yew Sesmch o Docknakr Tads Help Debug @4
" l';}:' J O ;‘j [tip iocairac BOBDGom k1 1 fanie g | [Z Snmeh | :;_'; o
Hease enber mformation about an enmplayee below
User Hame:
FPassword
First I ams
Last Mame:
Department
Errgleyenent Date [TTze: Bormnat yyy-sm-dd)
Ermad Address: [CTeeer Beerrraak fuaereueifE] oo ey Coofee)
Submil
0 G B Bl R Document Done (1.3 wecs) = g

The input is validated by the validate.jsp page when the form is submitted. The enter.jsp and
validate jsp pages are similar to the pages for input validation discussed in detail in
Chapter 10 and don't access the database. Instead of going through these pages now, let's
jump directly to the store.jsp page where the database access takes place. We'll return to the
enter.jsp and validate.jsp pages at the end of this chapter, to look at some interesting things
not related to database access.

Example 11-1 shows the complete store.jsp page. This page first searches the database for
information about an employee with the specified username. If one is found, the database is
updated with all the other employee information the user entered. Otherwise, a new employee
entry is stored in the database. All database information about the employee is then collected,
and the request is forwarded to the confirmation.jsp page. Let's look at the complete page first
and then discuss the different pieces in detail.

Example 11-1. Database access page (store.jsp)

<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%Q@ taglib prefix="sql" uri="http://java.sun.com/jstl/sql" %>
<%Q@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %

<%--
See if the employee is already defined. If not, insert the
info, else update it.
-—%>
<sql:query var="empDbInfo">
SELECT * FROM Employee
WHERE UserName = ?
<sql:param value="§${param.userName}" />
</sql:query>

[N

Deal with the date values: parse the employment date and create a
Date object from it, and create a new variable to hold the current
date.

-=%>

<fmt:parseDate value="${param.empDate}" var="parsedEmpDate"
pattern="yyyy-MM-dd" />

<jsp:useBean id="now" class="java.util.Date" />

156

Chapter 11. Accessing a Database

<c:choose>
<c:when test="${empDbInfo.rowCount == 0}">
<sql:update>
INSERT INTO Employee
(UserName, Password, FirstName, LastName, Dept,
EmpDate, EmailAddr, ModDate)
VALUES (?, 2, 2, 2, 2, 2, 2, ?)
<sql:param value="${param.userName}" />
<sql:param value="${param.password}" />
<sql:param value="${param.firstName}" />
<sql:param value="${param.lastName}" />
<sql:param value="${param.dept}" />
<sqgl:dateParam value="${parsedEmpDate}" type="date"/>
<sql:param value="${param.emailAddr}" />
<sqgl:dateParam value="${now}" />
</sql:update>
</c:when>
<c:otherwise>
<sqgl:update>
UPDATE Employee
SET Password = ?,
FirstName = ?,
LastName = ?,
Dept = 2,
EmpDate = ?,
EmailAddr =
ModDate = ?
WHERE UserName = ?
<sql:param value="§{param.password}" />
<sql:param value="${param.firstName}" />
<sql:param value="${param.lastName}" />
<sql:param value="${param.dept}" />
<sql:dateParam value="${parsedEmpDate}" type="date"/>
<sql:param value="${param.emailAddr}" />
<sql:dateParam value="${now}" />
<sql:param value="§${param.userName}" />
</sql:update>
</c:otherwise>
</c:choose>
<%-- Get the new or updated data from the database --%>
<sql:query var="newEmpDbInfo" scope="session">
SELECT * FROM Employee
WHERE UserName = ?
<sqgl:param value="${param.userName}" />
</sql:query>
<%-- Redirect to the confirmation page --%>
<c:redirect url="confirmation.jsp" />

2
<

All JSTL database actions are packaged in their own tag library. At the top of the page in
Example 11-1 you'll find the taglib directive for this library that associates it with the sgl
prefix, similar to the tag libraries used in the previous examples. Most of the JSTL database
actions are used in this page. Let's look at them one at a time.

11.1.4.1 Reading database information

The first JSTL action that accesses the database in Example 11-1 is the <sqgl:query>
action, described in Table 11-3.

157

Chapter 11. Accessing a Database

Table 11-3. Attributes for JSTL < sql:query>

Attribute Dynamic o
Java type value Description
name
accepted
] . 1.DatasS e .
datasource [JAVEH-SAL. HARASOUECE Hy o Optional. The DataSource to use.
or String
ol String Yes Mandatory, unless specified as the
body. The SQL statement.
Optional. The maximum number of]
maxRows int Yes rows to include in the result. Default

is all rows.

Optional. The first row to include in
startRow |int Yes the result, expressed as a 0-based
index. Default is 0.

Mandatory. The name of the

Stri .
o o No variable to hold the result.
Optional. The scope for the data
ceope Sring No source, one of page, request,

session, or application.
page is the default.

The <sgl:query> action reads information from a database using the SQL SELECT
statement, specified in the element's body or as the sql attribute value. A SELECT statement
retrieves data from the database by specifying various clauses that identify the table to search
in, the columns to return, the search criteria, and other options. If you're not familiar with the
SELECT statement, you can read up on it in the documentation for your database. The
SELECT statement in Example 11-1 gets all columns in the Employee table for every row in
which the UserName column has the value specified in the userName field in the entry
form. Since the username is unique in our application, either 0 or one row is returned.

The <sgl:query> action in this example gets a connection from the default DataSource
specified by the context parameter. It then executes the SQL SELECT statement and saves the
result in the scope specified by the scope attribute, with the name specified by the var
attribute. If no scope is specified, as in this example, the result is saved in the page scope.

Besides the SQL statement, the action element body also contains an <sgl :param> action,
described in Table 11-4.

Table 11-4. Attributes for JSTL <sql:param>

Attribute |Java |Dynamic value

name type |accepted Description

Mandatory, unless specified as the body. The value to

value object |Yes . ” .
use for a placeholder in the enclosing database action.

The <sgl:param> action replaces a placeholder, marked with a question mark (?), in the
SQL statement with a value. In Example 11-1, the EL expression used for the value attribute

158

Chapter 11. Accessing a Database

gets the userName request parameter value, corresponding to the form field with the same
name in the enter.jsp page:

<sgl:query var="empDbInfo">
SELECT * FROM Employee
WHERE UserName = ?
<sgl:param value="${param.userName}" />
</sql:query>

You could use a <c:out> action in the body instead to insert the userName parameter value
directly into the SQL statement, like this:

<ora:sqglQuery id="empDbInfo">
SELECT * FROM Employee
WHERE UserName = '<c:out value="${params.userName}" />'
</ora:sglQuery>

but then you run into the problem of string quoting in SQL. Most database engines require a
string literal to be enclosed in single quotes in an SQL statement. That's easy to handle by just
putting single quotes around the <c:out> action, like I've done here. What's not so easy is
how to handle quotes within the string value. Different database engines employ different
rules for how to encode embedded quotes. Most require a single quote in a string literal to be
duplicated, while others use a backslash as an escape character or let you enclose the string
literal with double quotes if the value includes single quotes. When you use the
<sqgl :param> action, you don't have to worry about this type of formatting at all; the value
is set directly in the SQL statement, bypassing all quoting rules.

Another reason for using <sgl:param> is that using a <c:out> action to add a dynamic
value to an SQL statement is also a security risk. If a user enters a value such as "foo' OR 1 =
1 -- " in the username field, the SQL statement looks like this after the <c:out> action is
processed:

SELECT * FROM Employee
WHERE UserName = 'foo' OR 1 = 1 --'

The "OR 1 = 1" part means that this condition is always true, making the SQL statements
returning all rows instead of only one row matching a specific username. Most databases
interpret the " -- " part as the start of a comment, so whatever comes after these characters is
ignored. Tricks like this can be used to gain access to protected sites or return information that
is supposed to be secret. Using <sgl:param> prevents this type of attacks. Instead of
merging the dynamic value and the static text to create an SQL statement that the database
then interprets, the <sqgl:param> action explicitly tells the database to use the provided
value in place of the ? when it has interpreted the statement. Hence, there's no way to fool it.

Only one dynamic value is needed in the query in Example 11-1, but an SQL statement can
contain as many placeholders as you like, matched by the same number of <sql :param>
actions in the <sgl : query> element body. The first <sql : param> action replaces the first
question mark in the SQL statement with its value, the second replaces the second question
mark, and so on.

The result generated by the <sgl:query> action is an instance of the
javax.servlet.Jjsp.jstl.sqgl.Result class. It's a bean with a number of properties

159

Chapter 11. Accessing a Database

for accessing all rows and their column values, as well as properties for the column names and
number of rows in the result. We look at most of the Result properties later in this chapter,
but the only one used in Example 11-1 is the rowCount property. It's used to see if the query
returned any rows. The SELECT statement searches the database for information about the
employee entered in the form. If the employee is already registered, the query returns one
row; otherwise no rows. This information is used to decide whether to insert or update the
employee information:

<c:choose>
<c:when test="${empDbInfo.rowCount == 0}">
<%-- Insert the employee data --%>
</c:when>
<c:otherwise>
<%-- Update the employee data --%>

</c:otherwise>
</c:choose>

11.1.4.2 Inserting database information

An SQL INSERT statement is used to insert new rows in a database table. To execute an
INSERT statement, use the <sqgl : update> action, described in Table 11-5.

Table 11-5. Attributes for JSTL <sql:update>

Attribute Dynamic -
Java type value Description
name
accepted
javax.sqgl.DataSource .
datasource |’ -5 Yes Optional. The DataSource to use.
or String
ol String Yes Mandatory, unless specified as the
body. The SQL statement.
.. String No Optional. The name of the variable
to hold the result.
Optional. The scope for the data
ceone ctring No sourcel, one of page, ,requ§8t’
session, or application.
page is the default.

The <sqgl:update> action executes any SQL statement that doesn't return rows: INSERT,
UPDATE, and DELETE, and even so-called Data Definition Language (DDL) statements such
as CREATE TABLE. These statements do exactly what it sounds like they do: insert, update
and delete information, and create a new table, respectively. (Refer to your database
documentation for details about the syntax.) For INSERT, UPDATE, and DELETE, the
<sqgl:update> action can optionally save an Integer object, telling how many rows were
affected by the statement. The Integer is saved in the scope specified by the scope
attribute using the name specified by the var attribute. This feature isn't used in
Example 11-1, but in some applications it can be used as feedback to the user or to decide
what to do next.

160

Chapter 11. Accessing a Database

The SQL statement can be specified through the sqgl attribute or the action's body, and
<sqgl:param> actions can be used to give values to the placeholders in the statement.
Multiple <sgl : param> actions are used in Example 11-1:

<sgl:update>
INSERT INTO Employee
(UserName, Password, FirstName, LastName, Dept,
EmpDate, EmailAddr, ModDate)
VALUES (?, 2, 2, 2, 2, 2, 2, 2)

<sgl:param value="${param.userName}" />

<sgl:param value="${param.password}" />

<sgl:param value="${param.firstName}" />

<sql:param value="${param.lastName}" />

<sgl:param value="${param.dept}" />

<sql:dateParam value="${parsedEmpDate}" type="date"/>
<sgl:param value="${param.emailAddr}" />
<sgl:dateParam value="${now}" />

</sqgl:update>

Most of the placeholders are replaced with request parameter values, just as for the query. The
exceptions are the placeholders for the EmpDate and ModDate columns, which require
special attention.

Databases are picky about the format for date and time data types. In Example 11-1 we get the
date from the form as a string in the format yyyy-MM-dd (e.g., 2002-03-06), but the
EmpDate column is declared as a DATE column, as shown in Table 11-1. Some databases
accept a string in the format used for this application as a value for a DATE column, but others
don't. To be on the safe side, it's best to convert the string into its native date format, a
java.util.Date object, before sending it to the database. It can be done using a JSTL
action from the formatting library, assigned the fmt prefix by the taglib directive at the
beginning of the page:

<fmt:parseDate value="${params.empDate}" var="parsedEmpDate"
pattern="yyyy-MM-dd" />

The <fmt : parseDate> action takes the date or time string specified by the value attribute
and interprets it according to the pattern defined by the pattern attribute. The pattern
describes the order and format of the year, month, and day parts in the string representation of
the date. We'll return to the <fmt:parseDate> action in Chapter 13 to look at all the
details, but for now it suffices to say that the pattern description is very flexible. For instance,
if you want the user to enter dates in a format such "Tuesday February 19, 2002," you specify
the pattern EEEE MMMM dd, vyyyy instead of the yyyy-MM-dd pattern used in this
example to tell the action how to interpret the date string. If the string value can be interpreted
as a date according to the pattern, the action saves a java.util.Date object representing
the date as a variable with the name specified by the var attribute. This variable can then
replace the placeholder in the SQL statement.

Besides dates, you should also convert numeric values you receive as strings when they are
declared as INT, REAL, etc., in the database, using the JSTL <fmt :parseNumber> action.
In this example, there are no columns of this type. The JSTL formatting actions are very
powerful, but let's save the details for Chapter 13.

161

Chapter 11. Accessing a Database

The Employee table also has a column named ModDate, to hold the date and time the
information was last modified. It is declared as a TIMESTAMP column. To set its value, we
need a java.util.Date object that represents the current date and time. It's easy to create
one with the <jsp:useBean> action:

<jsp:useBean id="now" class="java.util.Date" />

The <jsp:useBean> action can create an instance of any class that has a no-arguments
constructor, like the java.util.Date class does. The instance is saved in the variable
named by the id attribute.

Finally, we need to use the <sgl:dateParam> action, described in Table 11-6, instead of
the <sgl:param> action to set the date and timestamp values.

Table 11-6. Attributes for JSTL <sql:dateParam>
Attribute Dynamic value

ava Description
name Java type accepted escriptio
e Sova it ot Yes Mandatory.‘ The Valu§ to use fqr a
placeholder in the enclosing database action.
, Optional. One of date, time, or
type String Yes

timestamp. timestamp is the default.

You have to use <sqgl:dateParam> because of an unfortunate quirk in the JDBC APIL.
JDBC defines its own classes for date and time values: java.sgl.Date,
java.sqgl.Time, and java.sqgl.Timestamp. These are the only types accepted for date
and time value placeholders. The <sqgl:dateParam> takes a java.util.Date object
and turns it into one of the JDBC types based on the type attribute value or to a
java.sqgl.Timestamp if no type is specified.

11.1.4.3 Updating database information

Once you know how to insert information in a database, updating it's a piece of cake. You just
use the <sgl:update> action with an SQL UPDATE statement instead of an INSERT
statement:

<sqgl:update>
UPDATE Employee

SET Password = ?,
FirstName = ?,
LastName = ?,
Dept = ?,
EmpDate = ?,
EmailAddr = ?,
ModDate = ?

WHERE UserName = ?

<sgl:param value="${param.password}" />
<sgl:param value="${param.firstName}" />
<sql:param value="${param.lastName}" />

<sqgl:param value="${param.dept}" />
<sgl:dateParam value="${parsedEmpDate}" type="date" />

<sqgl:param value="${param.emailAddr}" />
<sgl:dateParam value="${now}" />
<sgl:param value="${param.userName}" />

</sqgl:update>

162

Chapter 11. Accessing a Database

No surprises here. The only difference from how you insert information is the SQL statement.
The UPDATE statement sets all the specified values for rows matching the WHERE clause, in
this case the single row for the specified employee.

11.1.5 Generating HTML from a Query Result

Just before the page in Example 11-1 redirects to the confirmation page, there's one more
<sqgl:query> action that retrieves the employee information that was just stored in the
database:

<sgl:query var="newEmpDbInfo" scope="session">
SELECT * FROM Employee
WHERE UserName = ?
<sgl:param value="${param.userName}" />
</sqgl:query>

The intention here is to present the information actually stored in the database to the user on
the final page in this application (shown in Figure 11-5) as a confirmation that the operation

was successful.

Figure 11-5. Employee registration confirmation page

Eubopun Inlu Stonnd - Muslla Budd ID; 2001122106} S =10 =i

Fie Edd Yiew Smach Go Bochmeds Tmils Helo [ebng Q6

i Oa J a »..i' [b e e B0 el feonfmeation jin | (O Sameh | :""i;\'-‘r‘

Thes 15 the mformation stored in the employee databass
Email Adilr: hanes (fgefions cibware com

EwnpDiate; 15970813

Firetlame: Hice

LastMame: Bergsten

Passward: foo

ModDate: 2002-03-16

Depe: E&D

TserTTame: hans

L & OF [EE 6 | Docured Dora 177 s g

Since we redirect to the confirmation page, ending the processing of the current request, the
result is placed in the session scope. The redirect response tells the browser to automatically
make a new request for the confirmation page. Because the new request is part of the same
session, it finds the result saved by the previous page. Example 11-2 shows the code for the
confirmation.jsp page.

Example 11-2. Page displaying query result (confirmation.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>
<head>
<title>Employee Info Stored</title>
</head>
<body bgcolor="white">
This is the information stored in the employee database:

163

Chapter 11. Accessing a Database

<table>
<c:forEach items="${newEmpDbInfo.rows}" var="row">
<c:forEach items="${row}" var="column">
<tr>
<td align=right>
<c:out value="${column.keyl}" />:
</td>
<td>
<c:out value="${column.value}" />
</td>
</tr>
</c:forEach>
</c:forEach>
</table>

</body>
</html>

At the top of the page is the same JSP directive for using the JSTL database tag library as in
Example 11-1.

An HTML table with cells for all columns in the row retrieved from the Employee table is
created by two nested <c: forEach> actions; the outer one loops over all rows in the result
(only one in this case), and the inner one loops over all columns in each row. To understand
how it works, we must take a closer look at the
javax.servlet.jsp.jstl.sqgl.Result returned by the <sgl:query> action and
saved in a variable named newEmpDbInfo in Example 11-1. The Result class is a bean
with a number of properties that provide read-only access to the query result, described in
Table 11-7.

Table 11-7. Properties for javax.servlet.jsp.jstl.sql.Result

Property name [Java type Access|Description

The rows returned by the query, as an array
of case-insensitive SortedMap instances.
rows java.util.sortedMap(]|Read |Each Map has one entry per column, using
the column name as the key and the column
value as the value.

The rows returned by the query, as arrays

rowsByIndex Object[]] Read
(rows) of arrays (column values)
rowCount int Read [The number of rows in the result.
, The column names in the same order as the
columnNames Stringl[] Read

column values in rowsByIndex.

true if the result was truncated due to
limitedByMaxRows|boolean Read |[reaching the Ilimit imposed by the
maxRows attribute.

For the outer <c: forEach> action, the rows property sets the items attribute to an array
of java.util.SortedMap objects. The array contains one SortedMap per row. The key
is the column name, and the value is the column value. The use of a SortedMap instead of a
regular Map makes it possible to access the values with column names specified with any
combination of upper- and lowercase letters. This is an important feature for portability, since

164

Chapter 11. Accessing a Database

some JDBC drivers convert all column names to uppercase in the result, while others keep
them as they are defined in the SELECT statement.

The inner <c:forEach> action loops over the current SortedMap entries representing
columns. To make it possible to use both the entry's name and value within the action body,
the <c:forEach> action makes the current entry available as an instance of
java.util.Map.Entry. This is a simple class with two bean properties, appropriately
named key and value. These properties are used in the inner loop to add table cells with the
column name and value. The result is as shown in Figure 11-5.

In most cases, you know the name of the columns you want to use. To generate an HTML
table with the values of a set of known columns, you can simply use one <c:forEach>
action like this:

<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Department</th>
</tr>
<c:forEach items="${newEmpDbInfo.rows}" var="row">
<tr>
<td>
<c:out value="${row.FirstName}" />
</td>
<td>
<c:out value="${row.LastNamel}" />
</td>
<td>
<c:out value="${row.Dept}" />
</td>
</tr>
</c:forEach>
</table>

The <c: forEach> action makes the SortedMap representing the current row available to
the actions in the body in a variable named row. The nested <c:out> actions use EL
expressions with column names as keys to get the value of the specific columns.

Yet another possibility is to access the column values by their numeric index. To do this, you
need to use the rowsByIndex property instead of the rows property to get an array of rows
to loop over, and then use the [] operator to specify the (0-based) index for the columns in
the <c:out> EL expressions:

<table>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Department</th>
</tr>
<c:forEach items="${newEmpDbInfo.rowsByIndex}" var="row">
<tr>
<td>
<c:out value="${row[2]}" />
</td>
<td>
<c:out value="${row[3]}" />
</td>

165

Chapter 11. Accessing a Database

<td>
<c:out value="${row[4]}" />
</td>
</tr>
</c:forEach>
</table>

The Result also gives you access to the column names through the columnNames
property. Using this property, you can generate an HTML table with header cells and data
cells for all rows in a table without knowing beforehand what columns the result contains:

<table>
<tr>
<c:forEach items="${emplList.columnNames}" var="colName">
<th><c:out value="${colName}" /></th>
</c:forEach>
</tr>
<c:forEach items="${emplList.rowsByIndex}" var="row">
<tr>
<c:forEach items="${row}" var="column">
<td><c:out value="${column}" /></td>
</c:forEach>
</tr>
</c:forEach>
</table>

The column names are in the same order as the corresponding values accessed through the
rowsByIndex property.

11.1.6 Searching for Rows Based on Partial Information

Let's move to the other part of the application, in which a user can search for an employee
based on a partial first name, last name and department name. The first page, search.html,
contains a form for entering the search criteria, shown in Figure 11-6.

Figure 11-6. Search criteria form

Seaich m Emplopes Database - Mozilly flweld IB: 2000122106
Fim Edl SYew Sasich [o fockmaks Jasks Help [Qetup QA

" OGJ O \-i. [e iiacatest BBDIciaer1 1 frmch Hird |E¢'=-5¢_ug__| :::‘_,.Q

Fl=ase amter mbormiation ahout the smployes youre lookmg for, You can use partial information & all figlds

B =10 x|

Firez Marne
Last Mame
Diepartment

: Eermrch

= 9F FE &2 | Docurend: Do 1.1 30 e

The three fields in the search.html page are named firstName, lastName, and dept, and
when the user clicks the Search button, the find.jsp page is invoked with the information the
user entered in the corresponding request parameters. Example 11-3 shows the complete

find.jsp page:

166

Chapter 11. Accessing a Database

Example 11-3. Search based on partial information (find.jsp)

<%Q@ taglib prefix="sgl" uri="http://java.sun.com/jstl/sgl" %>

<%--
Execute query, with wildcard characters added to the
parameter values used in the search criteria
-—%>
<sgl:query var="empList" scope="
SELECT * FROM Employee
WHERE FirstName LIKE ?
AND LastName LIKE °?
AND Dept LIKE ?

ORDER BY LastName
<sql:param value="%${param.firstName}%" />
<sql:param value="%${param.lastName}%" />
<sqgl:param value="%${param.dept}%" />

</sql:query>

request">

<jsp:forward page="list.]jsp" />

As you probably expected, the <sqgl : query> action searches for the matching employees.
But here, the SELECT statement uses the LIKE operator to find rows matching a pattern
instead of an exact match. LIKE is a standard SQL operator. It must be followed by a string
consisting of fixed text plus wildcard characters. There are two standard wildcard characters
you can use: an underscore (), which matches exactly one character, and a percent sign (%),
which matches zero or more characters.

In this example, we want to search for all rows that contain the values specified in the form
somewhere in the corresponding column values. The form-field values must therefore be
enclosed with percent signs. In Example 11-3, this is accomplished by combining the fixed
text (the wildcard characters) with EL expressions for reading the parameter values in the
value attribute for the <sqgl:param> actions that replace the placeholders in the SQL
statement. Each <sgl:param> action adds a percent sign at the beginning and at the end of
the value submitted by the user. If you instead want to find values that start with any sequence
of characters but end with the string entered by the user, add a percent sign only at the
beginning of the value. If you add the percent sign only at the end of the value, you get the
reverse result: values that start with the specified string but end with any characters.

The three LIKE conditions are combined with AND operators in Example 11-3. This means
that the SELECT statement finds only rows where all three columns contain the corresponding
values entered by the user.

11.1.7 Deleting Database Information

The find.jsp page forwards the request to the /isz.jsp page to display the result of the search. It
generates an HTML table with one row per employee, as shown in Example 11-4.

Example 11-4. Displaying the search result (list.jsp)

<%@ page contentType="text/html" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sqgl" uri="http://java.sun.com/jstl/sql" %>

167

<html>
<head>

Chapter 11. Accessing a Database

<title>Search Result</title>

</head>

<body bgcolor="white">

<c:choose>

<c:when test="${empList.rowCount == 0}">
Sorry, no employees were found.
</c:when>

<c:otherwise>

The
<p>

following employees were found:

<table border="1">
<th>Last Name</th>
<th>First Name</th>
<th>Department</th>
<th>Email Address</th>
<th>Modified</th>
<c:forEach items="${empList.rows}" var="row">

<tr>
<td><c:out value="${row.LastName}" /></td>
<td><c:out value="${row.FirstName}" /></td>
<td><c:out value="${row.Dept}" /></td>
<td><c:out value="${row.EmailAddr}" /></td>
<td><c:out value="${row.ModDate}" /></td>
<td>
<form action="delete.jsp" method="post">
<input type="hidden" name="userName"
value="<c:out value="${row.UserName}" />">
<input type="hidden" name="firstName"
value="<c:out value="${param.firstName}" />">
<input type="hidden" name="lastName"
value="<c:out value="${param.lastName}" />">
<input type="hidden" name="dept"
value="<c:out value="${param.dept}" />">
<input type="submit" value="Delete">
</form>
</td>
</tr>

</c:forEach>
</table>
</c:otherwise>
</c:choose>

</body>
</html>

The result is shown in Figure 11-7.

Figure 11-7. Displaying the search result

Seaich Resul - Hozilla {Buld 10: 2000122106} H s AIEJ_HI

= i Edl Meew Semch Go foohmaks Jade Hep Dabup DA

L 0.0 0 Q [(Errm) | <o [l
T | |

The Follosrmg employess wers found
| LastName First Noms| Department | Email Address Maodified
| Begeon Hamscn |Emgperor harrisen(@venmegut com 2002-03-16. Daete |
| Bergden Hans ESoﬁwuzIﬁanpmm:hm@tﬁmm&wqumzm.aj.]ﬁ Dielats E
Heawn Bob |science Lab robert@gesil com 2002-03-16| Deiete |
O &2 9F [l & | Documen: Done (044 secs) |

168

Chapter 11. Accessing a Database

A <c:forEach> action loops over all rows returned by the query in Example 11-3 to
generate an HTML table with some of the column values as described earlier. The last table
cell contains a simple HTML form with a Delete button that invokes the delete.jsp page and a
number of hidden fields. The hidden fields hold the value of UserName for the current row,
plus all the parameters used to perform the search. Example 11-5 shows how all these
parameters are used in the delete.jsp page.

Example 11-5. Deleting a row (delete.jsp)

<%@ taglib prefix="sqgl" uri="http://java.sun.com/jstl/sql" %>
<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<sgl:update>
DELETE FROM Employee
WHERE UserName = ?
<sgl:param value="${param.userName}" />
</sqgl:update>

<c:redirect url="find.jsp">

<c:param name="firstName" value="${param.firstName}" />
<c:param name="lastName" value="${param.lastName}" />
<c:param name="dept" value="${param.dept}" />

</c:redirect>

The userName request parameter value uniquely identifies the row to remove. The SQL
DELETE statement supports the same type of WHERE clause condition you have seen used in
SELECT and UPDATE statements previously. Here, the condition is used to make sure only
the row for the right employee is deleted. Like the INSERT and UPDATE statements, a
DELETE statement is executed with the help of the <sgl : update> action.

The other parameters passed from the /isz.jsp page are used in the redirect call to the find.jsp
page. This way, the find.jsp page uses the same search criteria as when it was called directly
from the search.html file, so the new result is consistent with the first. The only difference is
that the employee who was just deleted doesn't show up in the list.

11.1.8 Displaying Database Data over Multiple Pages

When you display a database query result based on user-provided search criteria, such as the
Employee Search form in Example 11-3, you run the risk of ending up with more rows than
you like to show on one page. If the amount of data is large, you may even want to set an
upper limit for how many rows can ever be returned by a query. The JSTL actions let you
control these things with a few attributes and a configuration setting I haven't described yet.

11.1.8.1 Setting an upper limit for the result size

To guard against run-away queries, you can set a context parameter in the deployment
descriptor to limit the number of rows returned by any JSTL <sgl:query> action in an
application:
<web-app>
%ééntext—param>
<param—name>

javax.servlet.jsp.jstl.sgl.maxRows
</param-name>

169

Chapter 11. Accessing a Database

<param-value>
100
</param-value>
</context-param>

</web-app>

The javax.servlet.jsp.jstl.sqgl.maxRows parameter value sets the maximum
number of rows any <sql : query> action in the application ever adds to the result. You can
override this value for an individual action with the maxRows attribute. If you want the action
to return all matching rows, set it to -1. There's also a Result bean property you can use to
inform the user that the query returned more rows than permitted by maxRows, named
limitedByMaxRows:

<sgl:query var="result" maxRows="500" dataSource="${example}"
sql="SELECT * FROM Employee" />

<c:if test="${result.limitedByMaxRows}">
Sorry, but we cannot show you all matches. Only the first 500
are shown below.

</c:if>

The 1imitedByMaxRows property is set to t rue whenever the result is truncated, no matter
if the maximum number of rows is specified by the context parameter or the attribute.

11.1.8.2 Getting a limited number of rows at a time

If the potential number of rows is large, you can combine the <sgl:query> maxRows
attribute with the startRow attribute to get only as many as you like to display on one page
at a time. Example 11-6 shows a page with Previous and Next Page links for moving through
all rows of a table.

Example 11-6. Using startRow and maxRows to limit result (maxrows.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sqgl" uri="http://java.sun.com/jstl/sql" %>

<html>
<head>
<title>All Employees</title>
</head>
<body bgcolor="white">
%-—- Set number of rows to process —--%>
<c:set var="noOfRows" value="2" />
<sgl:query var="empList" dataSource="${example}"
sgl="SELECT * FROM Employee ORDER BY LastName"
startRow="${param.start}" maxRows="${noOfRows}"
/>

<c:choose>
<c:when test="${empList.rowCount == 0}">
No one seems to work here any more
</c:when>
<c:otherwise>
The following people work here:
<p>
<table border="1">
<th>Last Name</th>
<th>First Name</th>
<th>Department</th>

170

Chapter 11. Accessing a Database

<th>Email Address</th>
<c:forEach items="${emplList.rows}" var="row">
<tr>
<td><c:out value="${row.LastName}" /></td>
<td><c:out value="S${row.FirstName}" /></td>
<td><c:out value="${row.Dept}" /></td>
<td><c:out value="S${row.EmailAddr}" /></td>
</tr>
</c:forEach>
</table>
</c:otherwise>
</c:choose>
<p>
<c:choose>
<c:when test="${param.start > 0}">
<a href="maxrows.]jsp?start=<c:out
value="§{param.start - noOfRows}" />">
Previous Page
</c:when>
<c:otherwise>
Previous Page
</c:otherwise>
</c:choose>
<c:choose>
<c:when test="${empList.limitedByMaxRows}">
<a href="maxrows.jsp?start=<c:out
value="${param.start + noOfRows}" />">
Next Page
</c:when>
<c:otherwise>
Next Page
</c:otherwise>
</c:choose>
</body>
</html>

At the beginning of the page, a <c:set> action creates a variable that holds the number of
rows to be processed per request. This is just to make it easier to change the number of rows if
needed.

The <sgl:query> action uses the startRow attribute to define which row to be the first in
the result (the first row has index 0) and the maxRows attribute to limit the number of rows.
The startRow attribute value is specified by a request parameter named start. The first
time the page is requested, this parameter isn't present so the EL expression evaluates to 0.
The maxRows attribute value is simply the variable created to hold the number of rows to
process. A <c:forEach> action generates an HTML table with all rows from the result, as
in the previous examples.

Two <c:choose> blocks at the end of the page create the Previous and Next Page links. The
Previous Page block tests if the start parameter has a value greater than 0, and if so, adds a
link back to the same page with a start parameter with the value of the current start
parameter minus the number of rows processed per page. If start isn't greater than 0, we're
already at the first page, so a link placeholder is added instead. The block for the Next Page
link follows the same pattern but tests the value of the 1imitedByMaxRows result property
instead. If it's true, there must be more data available, so you should create a link with the
start parameter set to the current value plus the number of rows to process.

There are a couple of other things in this example you should be aware of. First, I break my
own rule of separating business logic (the database query) from presentation (the HTML

171

Chapter 11. Accessing a Database

table), just to make the processing easier to understand. I hope you see how you can split this
over two pages: the one doing the database query forwarding to the one generating the table.
The other issue regards the startRow attribute. Because there's no database-independent
way to ask for only the matching rows starting at a certain index, the <sgl:query> action
simply gets all rows preceding the start index and throws them away. This isn't efficient for a
large set of rows. Instead of using startRow and maxRows, you can use database-specific
SQL features or a database column with a sequential value to handle this more efficiently:

<sgl:query var="empList" dataSource="${example}">
SELECT * FROM Employee
WHERE SomeId >= ? AND SomelId < *?
ORDER BY LastName
<sqgl:param value="${param.start}" />
<sqgl:param value="${param.start + noOfRows}" />
</sqgl:query>

For a reasonably number of rows, the approach described in Example 11-6 works fine,
though.

11.1.8.3 Run a query once and display the result over multiple pages

If the maximal number of rows that can be returned is small enough to keep in memory as a
session or application scope variable, you can use another approach based in the
<c:forEach> begin and end attributes, as shown in Example 11-7.

Example 11-7. Using begin and end to limit result (foreach.jsp)

<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="sqgl" uri="http://java.sun.com/jstl/sql" %>
<html>
<head>
<title>All Employees</title>
</head>
<body bgcolor="white">

<%-- Set number of rows to process —--%>
<c:set var="noOfRows" value="2" />
<c:if test="${empList == null}">
<sgl:query var="empList" scope="session"
sgl="SELECT * FROM Employee ORDER BY LastName"
/>
</c:if>
<c:choose>
<c:when test="${empList.rowsCount == 0}">
No one seems to work here anymore
</c:when>
<c:otherwise>
The following people work here:
<p>
<table border="1">
<th>Last Name</th>
<th>First Name</th>
<th>Department</th>
<th>Email Address</th>
<c:forEach items="${empList.rows}" var="row"
begin="${param.start}" end="${param.start + noOfRows - 1}">
<tr>
<td><c:out value="S${row.LastName}" /></td>
<td><c:out value="S${row.FirstName}" /></td>
<td><c:out value="${row.Dept}" /></td>

172

Chapter 11. Accessing a Database

<td><c:out value="S${row.EmailAddr}" /></td>
</tr>
</c:forEach>
</table>
</c:otherwise>
</c:choose>
<p>
<c:choose>
<c:when test="${param.start > 0}">
<a href="foreach.jsp?start=<c:out
value="${param.start - noOfRows}" />">
Previous Page
</c:when>
<c:otherwise>
Previous Page
</c:otherwise>
</c:choose>
<c:choose>
<c:when test="${param.start + noOfRows < empList.rowsCount}">
<a href="foreach.jsp?start=<c:out
value="${param.start + noOfRows}" />">
Next Page
</c:when>
<c:otherwise>
Next Page
</c:otherwise>
</c:choose>
</body>
</html>

As in Example 11-6, a noOfRows variable is created at the beginning of the page to hold the
number of rows to display per page. A <c:1if> action makes sure the database query is
executed only if a result doesn't exist in the session scope, where the <sqgl : query> action
places it when it's executed. If the data rarely changes, and the user can't change the query
result by providing input used in a WHERE clause, you can cache the result in the application
scope instead to minimize the memory needs. If the user can affect the query result, (i.e., user
input used in the search criteria), you need to modify the example to compare the input used
to generate the result and execute <sqgl : query> when it's different.

As before, a <c:forEach> action generates an HTML table for the result, but here it only
processes some of the rows. The begin attribute is set to the start parameter value,
defaulting to O if the parameter isn't present. The end attribute is set to the start parameter
value plus the number of rows to display, minus one; the end value is the index of the last
row to process, so subtracting one means it iterates exactly noOfRows times.

The <c:choose> blocks for the Previous and Next Page links are almost identical to the
ones in Example 11-6. The only difference is that the test for the Next Page link now
compares the start parameter value plus the number of rows to display to the total number

of rows in the result. As long as it's less than the number of rows, there's more to show, and so
the link is added.

11.2 Validating Complex Input Without a Bean

Before we look at the two remaining database sections, let's go back and take a look at the
two application pages we skipped earlier, namely the enter.jsp and validate.jsp pages used for
input to the employee registration.

173

Chapter 11. Accessing a Database

In Chapter 8, I introduced you to validation of user input using the JSTL <c:if> action as
well as using an application-specific bean. The bean contains all validation code and can
therefore validate the format of complex data, such as date strings, email addresses, and
credit-card numbers. This is the approach I recommend, but if you're developing a JSP-based
application without access to a Java programmer to develop the beans you need, I'll show you
a trick you can use to validate dates and a custom action for email-address validation.

The validate.jsp page uses the JSTL <c:1if> action and the custom actions to validate all
user input. If an input parameter isn't valid, an error message is saved in a variable, and the
request is forwarded back to the enter.jsp page. The enter.jsp page adds all the error messages
to the response, so to the user, the result is identical to the bean-based validation approach you
saw in Chapter 8.

Let's look at validate.jsp first, shown in Example 11-8.

Example 11-8. Validation with application beans (validate.jsp)

"

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jstl/fmt" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<c:set var="isValid" value="true" />
<c:1f test="${empty param.userName}">
<c:set var="userNameError" scope="request"
value="User Name missing" />
<c:set var="isValid" value="false" />
</c:if>
<c:if test="${empty param.password}">
<c:set var="passwordError" scope="request"
value="Password missing" />
<c:set var="isValid" value="false" />
</c:if>
<c:1f test="${empty param.firstName}">
<c:set var="firstNameError" scope="request"
value="First Name missing" />
<c:set var="isValid" value="false" />
</c:if>
<c:1f test="S${empty param.lastName}">
<c:set var="lastNameError" scope="request"
value="Last Name missing" />
<c:set var="isValid" value="false" />
</c:if>
<c:if test="S${empty param.dept}">
<c:set var="deptError" scope="request"
value="Department missing" />
<c:set var="isValid" value="false" />
</c:if>

<%-- Validate date by catching a possible exception --%>
<c:catch var="invalidDate">
<fmt:parseDate value="${param.empDatel}" pattern="yyyy-MM-dd"
var="ignore" />
</c:catch>
<c:choose>
<c:when test="${empty param.empDate}">
<c:set var="empDateError" scope='"request"
value="Employment Date missing" />
<c:set var="isValid" value="false" />
</c:when>

174

Chapter 11. Accessing a Database

<c:when test="${invalidDate != null}">
<c:set var="empDateError" scope='"request"
value="Invalid Employment Date" />
<c:set var="isValid" value="false" />
</c:when>
</c:choose>
<%-- Validate email address format using custom action --%>
<ora:ifValidEmailAddr value="${param.emailAddr}"
var="isValidEmailAddr" />
<c:choose>
<c:when test="${empty param.emailAddr}">
<c:set var="emailAddrError" scope="request"
value="Email Address missing" />
<c:set var="isValid" value="false" />
</c:when>
<c:when test="${'!'isValidEmailAddr}">
<c:set var="emailAddrError" scope='"request"
value="Invalid Email Address" />
<c:set var="isValid" value="false" />
</c:when>
</c:choose>
<c:choose>
<c:when test="${isValid}">
<jsp:forward page="store.jsp" />
</c:when>
<c:otherwise>
<jsp:forward page="enter.jsp" />
</c:otherwise>
</c:choose>

At the top of Example 11-8, a <c:set> action creates a variable named isValid with the
value true. The rest of the page validates each parameter value and sets this variable to
false if any value is found to be invalid. This makes it easy to decide which page to forward
to at the end of the page. In addition, if any value is invalid, another parameter-specific
variable is created in the request scope to hold the error message. As you will see later, these
error messages are added to the input page to tell the user what's wrong.

For most parameters, a simple <c:1if> action that tests that some value is submitted is all
that's needed. But for the empDate and emailAddr parameters, any old value isn't enough.

Verifying that a parameter value represents a real date is tricky, since there are so many
different ways to write a date. In addition, you need to keep track of leap years, and as you
will see in Chapter 13, possibly deal with dates written in different languages as well.
Luckily, there's a JSTL action that knows all these rules: the <fmt:parseDate> used in
Example 11-1. If it's passed a date string that doesn't check out, it throws an exception.
Combined with the <c : catch> action introduced in Chapter 9, this is all we need to validate
a date. The <fmt:parseDate> action is placed within a <c:catch> action element,
catching and saving a possible exception in a variable named invalidDate. A
<c:choose> date then uses one <c:when> action to test if a date string is supplied at all,
and if it is, tests if the <fmt:parseDate> action threw an exception with a second
<c:when> action. I could have used just a <c:1£> action to test if an exception was thrown,
but the approach used here lets me provide different error messages for no value and an
invalid value.

The email address is validated with a custom action named <ora:ifValidEmailAddr>,
described in Table 11-8.

175

Chapter 11. Accessing a Database

Table 11-8. Attributes for <ora:ifValidEmailAddr>

Attribute |Java [Dynamic value o .
Description

name type |accepted

value string [Yes Mandatory. The value to validate.

var string |No Optional. The name of the variable to hold the result.
Optional. The scope for the variable, one of page,

scope string [No request, session, or application. page is the
default.

The action can be used with a body that's evaluated only if the value has a valid email-address
format (contains only one at sign and at least one dot, e.g., "hans@gefionsoftware.com"), just
like the <c:if> action. Here the result is saved in a variable instead and used in a
<c:choose> block to test for both no value and invalid value, the same as is done for the
date value.

If the request is forwarded back to the enter.jsp page due to invalid input, the values the user
entered are used as the default values for the form fields and the error messages are displayed
next to each field. Example 11-9 shows a part of the page for the User Name field.

Example 11-9. Displaying error messages (enter.jsp)

<tr>
<td>User Name:</td>
<td><input type="text" name="userName"
value="<c:out value="${param.userName}" />">
</td>
<td><c:out value="${userNameError}" /></td>
</tr>

The first <c:out> action sets the value of the input field to the corresponding parameter
value. The second <c:out> action uses the userNameError variable created by the
validate.jsp page if the userName parameter value is invalid and adds the message to the
page. The results are shown in Figure 11-8.

Figure 11-8. The input page with error messages

* Emgaspee Enlrp Feam - Mozilla {Hudd 0 2001132106 =100 =
Eia Ece View Seach o Deokmake Task: Help [Qebug D&

: :‘-):: H’l ._JI «J] 5 g sl st BB et ch 1M valulabe ixp | | <l Geamieh | 3o
Heaze enter mifcrmation about an smplayee below
User Mame hens
Fassword Password missing
First ame Hans
Last Mame Bergsian
Drepartment Soltwara Devalopmant
Ervglomenent Drabe: [B 587 Trwikd Exnploymees Date (Thae foemnat wryy-men-dd)
Ersal Address |hene@gelionsoware.co ({TTae Bormant ooene (Deonrpany coo)

Submi
0 & B B 0 | Docurenl Dons |5 74) —ai

176

Chapter 11. Accessing a Database

This is very similar to the examples in Chapter 8. The difference is that a separate page does
the validation, creating all error messages as request scope variables that are then used in the
input page if they exist, instead of conditionally adding error messages defined in the input
page. Which approach is best is a matter of preference.

11.3 Using Transactions

There's one important database feature we have not discussed yet. In the examples in this
chapter, only one SQL statement is needed to complete all database modifications for each
request. This statement either succeeds or fails. However, sometimes you need to execute two
or more SQL statements in sequence to update the database. A typical example is transferring
money between two accounts; one statement removes some amount from the first account,
and another statement adds the same amount to the second account. If the first statement is
successful, but the second one fails, you have performed a disappearance act your customers
aren't likely to applaud.

The solution to this problem is to group all related SQL statements into what is called a
transaction. A transaction is an atomic operation, so if one statement fails, they all fail;
otherwise, they all succeed. This is referred to as committing (if it succeeds) or rolling back (if
it fails) the transaction. If there's a problem in the middle of a money transfer, for instance, the
database makes sure the money is returned to the first account by rolling back the transaction.
If no problems are encountered, the transaction is committed, permanently storing the changes
in the database.

There's a JSTL database action to handle transactions, described in Table 11-9.

Table 11-9. Attributes for JSTL <sql:transaction>

. Dynamic
Attribute y .
Java type value Description
name
accepted
javax.sql.DataSource)
datasource |’ -5 Yes Optional. The DataSource to use.
or String
Optional. One of]
read committed,
isolation |String Yes read uncommitted,
repeatable read, or
serializable.

We will use it for real in Chapter 12, but let's take a quick look at how it could be used in this
fictitious example:

<sgl:transaction>

<sqgl:update>
UPDATE Account SET Balance = Balance - 1000
WHERE AccountNumber = 1234
</sqgl:update>

177

Chapter 11. Accessing a Database

<sgl:update>
UPDATE Account SET Balance = Balance + 1000
WHERE AccountNumber = 5678
</sqgl:update>

</sgl:transaction>

All SQL actions that make up a transaction are placed in the body of a
<sqgl:transaction> action element. This action tells the nested elements which database
to use, so if you need to specify the database with the dataSource attribute, you must
specify it for the <sql:transaction> action.

The isolation attribute can specify special transaction features. When the DataSource is
made available to the application through JNDI or by another application component, it's
typically already configured with an appropriate isolation level. This attribute is therefore
rarely used. The details of the different isolation levels are beyond the scope of this book. If
you believe you need to specify this value, you can read up on the differences in the JDBC
API documents or in the documentation for your database. You should also be aware that
some databases and JDBC drivers don't support all transaction isolation levels.

The <sgl:transaction> action gets a connection from the data source and makes it
available to all database actions within its body. If one action fails, the transaction is rolled
back; otherwise the transaction is committed at the end of the <sgl:transaction> body.

11.4 Application-Specific Database Actions

You can use the JSTL database actions described in this chapter to develop many types of
interesting web applications, such as product catalog interfaces, employee directories, or
online billboards, without being a Java programmer. These types of applications account for a
high percentage of the web applications developed today. But at some level of complexity,
putting SQL statements directly in the web pages can become a maintenance problem. The
SQL statements represent business logic, and for more complex applications, business logic is
better developed as separate Java classes.

For a complex application, it may be better to use application-specific custom actions instead
of the JSTL database actions described in this chapter. For example, all the generic database
actions in Example 11-1, to SELECT and then INSERT or UPDATE the database, can be
replaced with one application-specific action like this:

<myLib:saveEmployeeInfo dataSource="${example}" />

Part III, especially Chapter 23, describes how you can develop this type of custom action.
Besides making it easier for the page author to deal with, the beauty of using an application-
specific custom action is that it lets you evolve the application behind the scene. Initially, this
action can be implemented so it uses JDBC to access the database directly, similar to how the
JSTL actions work. But at some point it may make sense to migrate the application to an
Enterprise JavaBeans architecture, perhaps to support other types of clients than web
browsers. The action can then be modified to interact with an Enterprise JavaBeans
component instead of accessing the database directly. From the JSP page author's point of
view, it doesn't matter; the custom action is still used exactly the same way.

178

Chapter 11. Accessing a Database

Another approach is to use a servlet for all database processing and only use JSP pages to
show the result. You will find an example of this approach in Chapter 18.

179

Chapter 12. Authentication and Personalization

Chapter 12. Authentication and Personalization

Authentication means establishing that a user really is who he claims to be. Today, it's
typically done by asking the user for a username and a matching password, but other options
are becoming more and more common. For example, most web servers support client
certificates for authentication. Biometrics, which is the use of unique biological patterns such
as fingerprints for identification, will likely be another option in the near future. What's
important is that an application should not be concerned with the way a user has been
authenticated (since the method may change) but only that he has passed the test.

Access control, or authorization, is another security mechanism that's strongly related to
authentication. Different users may be allowed different types of access to the content and
services a web site offers. When you have established who the user is through an
authentication process, access-control mechanisms ensure that the user can only access what
he is allowed to access.

In the end, authentication provides information about who the user is, and that's what is
needed to provide personalized content and services. For some types of personalization, the
procedures we might think of as authentication may be overkill. If the background colors and
type of news listed on the front page are the extent of the personalization, a simple cookie can
be used to keep track of the user instead. But if personalization means getting access to
information about taxes, medical records, or other confidential information, true
authentication is definitely needed.

In this chapter we look at different approaches to authentication and access control with JSP,
and we use the information about who the user is to provide modest personalization of the
application pages. Security, however, is about more than authentication and access control.
The last section of this chapter presents a brief summary of other areas that need to be covered
for applications dealing with sensitive data.

12.1 Container-Provided Authentication

A JSP page is always executing in a runtime environment provided by a container.
Consequently, all authentication and access control can be handled by the container, relieving
the application developer from the important task of implementing appropriate security
controls. Security is hard to get right, so your first choice should always be to use the time-
tested mechanisms provided by the container.

12.1.1 Authenticating Users

The servlet specification (starting with Version 2.2), on which JSP is based, describes three
authentication mechanisms supported by most web clients and web servers:

e HTTP basic authentication
o HTTP digest authentication
e HTTPS client authentication

In addition, it defines one mechanism that should be implemented by a compliant servlet
container:

180

Chapter 12. Authentication and Personalization

e Form-based authentication

HTTP basic authentication has been part of the HTTP protocol since the beginning. It's a very
simple and not very secure authentication scheme. When a browser requests access to a
protected resource, the server sends back a response asking for the user's credentials
(username and password). The browser prompts the user for this information and sends the
same request again, but this time with the user credentials in one of the request headers so the
server can authenticate the user. The username and password are not encrypted, only slightly
obfuscated by the well-known base64 encoding. This means it can easily be reversed by
anyone who grabs it as it's passed over the network. This problem can be resolved using an
encrypted connection between the client and the server, such as the Secure Sockets Layer
(SSL) protocol. We talk more about this in the last section of this chapter.

HTTP/1.1 introduced HTTP digest authentication. As with basic authentication, the server
sends a response back to the browser when it receives a request for a protected resource. But
with the response, it also sends a string called a nonce. The nonce is a unique string generated
by the server, typically composed of a timestamp, information about the requested resource,
and a server identifier. The browser creates an MD5 checksum, also known as a message
digest, of the username, the password, the given nonce value, the HTTP method, and the
requested URL, and sends it back to the server in a new request. The use of an MD5 message
digest means that the password cannot easily be extracted from information recorded from the
network. Additionally, using information such as timestamps and resource information in the
nonce minimizes the risk of "replay" attacks. The digest authentication is a great improvement
over basic authentication. The only problem is that it's not broadly supported in today's web
clients and web servers.

HTTPS client authentication is the most secure authentication method supported today. This
mechanism requires the user to possess a Public Key Certificate (PKC). The certificate is
passed to the server when the connection between the browser and server is established, using
a very secure challenge-response handshake process; it is used by the server to uniquely
identify the user. As opposed to the mechanisms previously described, the server keeps the
information about the user's identity as long as the connection remains open. When the
browser requests a protected resource, the server uses this information to grant or refuse
access.

These three mechanisms are defined by Internet standards. They are used for all sorts of web
applications, servlet-based or not, and are usually implemented by the web server itself as
opposed to the web container. The servlet specification defines only how an application can
gain access to information about a user authenticated with one of them, as you will see soon.

The final mechanism, form-based authentication, is unique to the servlet specification and is
implemented by the web container itself. Form-based authentication is as insecure as basic
authentication for the same reason: the user's credentials are sent as clear text over the
network. To protect access to sensitive resources, it should be combined with encryption such
as SSL.

Unlike basic and digest authentication, form-based authentication lets you control the
appearance of the login screen. The login screen is a regular HTML file with a form
containing two mandatory input fields -- j username and j password -- and the action
attribute set to the string J security check:

181

Chapter 12. Authentication and Personalization

<form method="POST" action="j security check">

<input type="text" name="j username">
<input type="password" name="j password">
</form>

From the user's point of view, it works just like basic and digest authentication. When the user
requests a protected resource, the login form is shown, prompting the user to enter a username
and password. The j security check action attribute value is a special URI that is
recognized by the container. When the user submits the form, the container authenticates the
user using the j username and j password parameter values. If the authentication is
successful, it redirects the browser to the requested resource; otherwise an error page is
returned. We'll get to how you specify the login page and the error page shortly.

12.1.2 Controlling Access to Web Resources

All the authentication mechanisms described so far rely on two pieces of information: user
definitions and information about the type of access control needed for the web application
resources.

How users, and groups of users, are defined depends on the server you're using. Some web
servers, such as Microsoft's Internet Information Server (IIS), can use the operating system's
user and group definitions. Others, such as the iPlanet Web Server (formerly Netscape
Enterprise Server), let you use their own user directory or an external LDAP server. The
security mechanism defined by the servlet specification describes how to specify the access-
control constraints for a web application, but access is granted to a role instead of directly to a
user or a group. Real user and group names for a particular server are mapped to the role
names used in the application. How the mapping is done depends on the server, so you need
to consult your web server and servlet container documentation if you use a server other than
Tomcat.

By default, the Tomcat server uses a simple XML file to define users and assign them roles at
the same time. The file is named tomcat-users.xml and is located in the conf directory. To run
the examples in this chapter, you need to define at least two users and assign one of them the
role admin and the other the role user, like this:

<tomcat-users>
<user name="paula" password="boss" roles="admin" />
<user name="hans" password="secret" roles="user" />
</tomcat-users>

Here the user paula is assigned the admin role, and hans is assigned the user role. Note
that this is not a very secure way to maintain user information (the passwords are in clear text,
for instance). This approach is intended to make it easy to get started with container-based
security. Tomcat 4 can also be configured to use a database or a JNDI-accessible directory.
For a production site, you should use one of these options instead. See the Tomcat 4
documentation for details.

The type of access control that should be enforced for a web application resource, such as a
JSP page or all files in a directory, is defined in the web application deployment descriptor
(the WEB-INF/web.xml file). As you may recall, the deployment descriptor format is defined
by the servlet specification, so all compliant servlet containers support this type of security
configuration.

182

Chapter 12. Authentication and Personalization

Let's look at how you can define the security constraints for the example we developed in
Chapter 11. To restrict access to all pages dealing with employee registration, it's best to place
them in a separate directory. The directory with all examples for Chapter 12 has a
subdirectory named admin in which all these pages are stored. The part of the deployment
descriptor that protects this directory looks like this:

<security-constraint>
<web-resource-collection>
<web-resource-name>admin</web-resource-name>
<url-pattern>/chl2/admin/*</url-pattern>
</web-resource-collection>

<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>

<login-config>
<auth-method>BASIC</auth-method>
<realm-name>ORA Examples</realm-name>
</login-config>

<security-role>
<role-name>admin</role-name>
</security-role>

The <security-constraint> element contains a <web-resource-collection>
element that defines the resources to be protected and an <auth-constraint> element
that defines who has access to the protected resources. Within the <web-resource-
collection> element, the URL pattern for the protected resource is specified with the
<url-pattern> element. Here it is set to a pattern for the directory with all the registration
pages: /chl12/admin/*. The <role-name> element within the <auth-constraint>
element says that only users in the role admin can access the protected resources.

You define the type of authentication to use and a name associated with the protected parts of
the application, know as the realm, with the <login-config> element. The <auth-
method> element accepts the values BASIC, DIGEST, FORM and CLIENT-CERT,
corresponding to the authentication methods described earlier. Any text can be used as the
value of the <realm-name> element. The text is shown as part of the message in the dialog
the browser displays when it prompts the user for the credentials.

If you use form-based authentication, you must specify the names of your login form and
error page in the <login-config> element as well:

<login-config>
<auth-method>FORM</auth-method>
<form-login-config>
<form-login-page>/login/login.html</form-login-page>
<form-error-page>/login/error.html</form-error-page>
</form-login-config>
</login-config>

<security-role> elements are used to declare all role names that must be mapped to

users and groups in the container's security domain. This information can be used by an
application-deployment tool to help the deployer with this task.

183

Chapter 12. Authentication and Personalization

With these security requirement declarations in the deployment descriptor, the web server and
servlet container take care of all authentication and access control for you. You may still need
to know, however, who the current user is, for instance to personalize the content. If you
configure your server to let different types of users access the same pages, you may need to
know what type of user is actually accessing a page right now. This information can be
accessed using the EL and custom actions, as you will see in a moment.

Let's add another security constraint for the search pages from Chapter 11:

<security-constraint>
<web-resource-collection>
<web-resource-name>search</web-resource-name>
<url-pattern>/chl2/search/*</url-pattern>
</web-resource-collection>

<auth-constraint>
<role-name>admin</role-name>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

<security-role>
<role-name>admin</role-name>
</security-role>
<security-role>
<role-name>user</role-name>
</security-role>

With this constraint, the server allows only authenticated users with the roles admin and
user to access the pages in the /chi2/search directory. Since we add a new role (user) for
this constraint, we must also add the corresponding <security-role> element.

You can then use information about who the user is to provide different information.
Example 12-1 shows a fragment of a modified version of the list.jsp page from Chapter 11.

Example 12-1. Generating the response based on who the current user is (list.jsp)

<c:forEach items="${empList.rows}" var="row">
<tr>
<td><c:out value="S${row.LastName}" /></td>
<td><c:out value="S${row.FirstName}" /></td>
<td><c:out value="${row.Dept}" /></td>
<td><c:out value="${row.EmailAddr}" /></td>
<td><c:out value="S${row.ModDate}" /></td>

<ora:ifUserInRole value="admin" wvar="isAdmin" />
<c:choose>
<c:when test="${isAdmin or

pageContext.request.remoteUser == row.UserName}'">
<td><c:out value="${row.UserName}" /></td>
<td><c:out value="S${row.Password}" /></td>

</c:when>
<c:otherwise>
<td>**rxrx</td>
<td>*Frx</td>
</c:otherwise>
</c:choose>

184

Chapter 12. Authentication and Personalization

<c:if test="${isAdmin}">
<td>
<form action="delete.jsp" method="post">

<input type="hidden" name="userName"

value="<c:out value="${row.UserName}" />">
<input type="hidden" name="firstName"
value="<c:out value="${param.firstName}" />">
<input type="hidden" name="lastName"
value="<c:out value="${param.lastName}" />">
<input type="hidden" name="dept"
value="<c:out value="${param.dept}" />">
<input type="submit" value="Delete">
</form>
</td>
</c:if>
</tr>

</c:forEach>

The amount of information displayed about each employee differs depending on who invokes
the page. If the authenticated user is an administrator, the username and password information
for all users is displayed, as well as a Delete button for removing information about an
employee. Otherwise, the username and password fields are filled with asterisks, except for
the row with information about the authenticated user herself.

To test if the authenticated user belongs to the admin role, a custom action is needed: the
<ora:ifUserInRole> action (Table 12-1) evaluates its body if the specified role matches
a role for the current user. If a variable name is specified by the var attribute, it instead saves
true or false in the variable. In Example 12-1, the result of the test is saved in a variable
named isAdmin.

Table 12-1. Attributes for <ora:ifUserinRole>

Attribute |Java [Dynamic value .
Description

name type |accepted

value string [Yes Mandatory. The role name to test with.

var string |No Optional. The name of the variable to hold the result.
Optional. The scope for the variable, one of page,

scope string |No request, session, or application. page is the
default.

The username for the authenticated user can be retrieved with an EL expression, through a
property of the request object that is accessible through the implicit pageContext object:
pageContext.request.remoteUser. For each row, a <c:choose> block
conditionally displays the username and password if the authenticated user is an administrator
or the user represented by the current row, or just asterisks if it's someone else.

The isAdmin variable created by the <ora:ifUserInRole> action is used again in the
condition for the <c: i £> action, which conditionally adds the form with the Delete button.

12.2 Application-Controlled Authentication

Using one of the container-provided mechanisms described in the previous section should be
your first choice for authentication. But, by definition, being container-provided means the

185

Chapter 12. Authentication and Personalization

application cannot dynamically add new users and roles to control who is granted access, at
least not through a standard API defined by the servlet and JSP specifications.

For some types of applications, it's critical to have a very dynamic authentication model; one
that doesn't require an administrator to define access rules before a new user can join the
party. I'm sure you have seen countless sites where you can sign up for access to restricted
content simply by filling out a form. One example is a project management site, where
registered users can access document archives, discussion groups, calendars, and other tools
for distributed cooperation. Another example is a personalized news site that you can
customize to show news only about things you care about.

Unless you can define new users programmatically in the database used by an external
authentication mechanism, you need to roll your own authentication and access-control
system for these types of applications. In this section, we'll look at the principles for how to
do this. Note that this approach sends the user's password as clear text, so it has the same
security issues as the container-provided basic and form-based authentication methods.

Application-controlled authentication and access control requires the following pieces:

o User registration

e A login page

e The authentication mechanism, invoked by the login page

o Information saved in the session scope to serve as proof of successful authentication
e Validation of the session information in all JSP pages requiring restricted access

We'll reuse the example from Chapter 11 for user registration; this allows us to focus on the
parts of an application that require access control. The application is a simple billboard
service, where employees can post messages related to different projects they are involved
with. An employee can customize the application to show only messages about the projects he
is interested in. Figure 12-1 shows all the pages and how they are related.

Figure 12-1. Application with authentication and access control

I —— GET (RiFELY vsoeroasssemcssmsnsesniansd logoutEp updateprafile sp
i O r o)
: e ftr POST 6T
¥ e “’l (redirect)
= 1 ol I o — e E
lngin.jsp] :
T g GET e eoticol| TP
iredirect) i -:]IH :
GET Iréli irect) +
forwand I R - i G bl - I -
{mot logged in) T f'EET
H 3
POST {redirect)
,- ¥ :
g | STOEMGQED y
' 3 g O'—." D viewpage
£ proceis poge

Let's go over it step by step. The login.jsp page is our login page. It contains a form that
invokes the authenticate.jsp page, where the username and password are compared to the
information in the employee information database created in Chapter 11. If a matching user is
found, the autheticate.jsp page creates an EmployeeBean object and saves it in the session

186

Chapter 12. Authentication and Personalization

scope. This bean serves as proof of authentication. It then redirects the client to a true
application page. The page the user is redirected to depends on whether the user loaded the
login.jsp page or tried to directly access an application page, without first logging in. All
application pages, specifically main.jsp, entermsg.jsp, storemsg.jsp, and updateprofile.jsp,
look for the EmployeeBean object and forward to the login.jsp page if it's not found which
forces the user to log in. When the login.jsp page is loaded this way, it keeps track of the page
the user tried to access so it can be displayed automatically after successful authentication.
Finally, there's the logout.jsp page. This page can be invoked from a link in the main.jsp page.
It simply terminates the session and redirects to the login.jsp page.

12.2.1 A Table for Personalized Information
Since the sample application in this chapter lets the user personalize the content of the

billboard, we need a database table to store information about each employee's choices. The
new table is shown in Table 12-2.

Table 12-2. EmployeeProjects database table

Column name SQL data type Primary key?
UserName CHAR (text) Yes
ProjectName CHAR (text) Yes

The table holds one row per unique user-project combination. You need to create this table in
your database before you can run the example.

12.2.2 Logging In

The login page contains an HTML form with fields for entering the user credentials: a
username and a password. This is why the information was included in the Employee table
in Chapter 11. Example 12-2 shows the complete login.jsp page.

Example 12-2. Login page (login.jsp)

<%@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>

<html>

<head>
<title>Project Billboard</title>

</head>

<body bgcolor="white">
<hl>Welcome to the Project Billboard</hl>
Your personalized project news web site.
<p>

<c:out value="${param.errorMsg}" />

<form action="authenticate.jsp" method="post">

<input type="hidden" name="origURL"
value="<c:out value="${param.origURL}" />">

Please enter your User Name and Password, and click Enter.

<p>
Name :

187

Chapter 12. Authentication and Personalization

<input name="userName"
value="<c:out value="${cookie.userName.value}" />"
size="10">
Password:
<input type="password" name="password"
value="<c:out value="${cookie.password.value}" />"
size="10">
<input type="submit" value="Enter">
<p>
Remember my name and password:
<input type="checkbox" name="remember"
<c:if test="${'!'empty cookie.userName}">checked</c:if>>

(This feature requires cookies to be enabled in your browser)
</form>
</body>
</html>

The form contains the fields for the username and password, and the action attribute is set to
the authenticate.jsp page as expected. However, it also contains <c:out> actions that may
need an explanation.

The following fragment displays a message that gives a hint as to why the login page is shown
after an error:

<c:out value="${param.errorMsg}" />

The errorMsg request parameter may contain an error message, set by the other pages when
they forward to the login page, as you will soon see. If so, the <c:out> action displays the
message. When the user loads the login.jsp directly, the parameter is not available in the
request, so nothing is added to the response. Figure 12-2 shows an example of the login page
with an error message.

Figure 12-2. Login page with error message

Progect Bilboard - Mezila [Build 1D 2000 122106}
Eia Ede Yiew Seach o Dockrark: Taski el [ebug DA

Oﬂ J O J [e stecatest B0 mareh 120egm e big=Theett) | [Gamieh | ‘-'-.':;Q,
*
[=]

=l =

Welcome to the Project Billboard

Toir personalizad preject news web e,
Hease enter yer Uaer Hame and Paseword, aeed click Enter

Mage: hane Paasweed Erter

Eemember my name and paseword: F
(This feature requres cockies to be enabled @ yom browser)

e

= g W | Dipxcuen! Dons 2 95 24 a

Within the form, you find similar <c: out> action elements:

<input type="hidden" name="origURL"
value="<c:out value="${param.origURL}" />">

188

Chapter 12. Authentication and Personalization

Here, a hidden form field is set to the value of the originally requested URL. The value is
passed as a parameter to the login page when another page forwards to it. This is how to keep
track of which page the user wasn't allowed access to because he wasn't authenticated yet.
Later you'll see how this information is used to load the originally requested page after
authentication.

12.2.2.1 Using cookies to remember the username and password
The more web applications

with restricted access a web surfer uses, the more usernames and passwords to remember.
After a while, it may be tempting to resort to the greatest security sin of all: writing down all
usernames and passwords in a file such as mypasswords.txt. This invites anyone with access
to the user's computer to roam around in all the secret data.

It can be a big problem keeping track of all accounts. Some sites therefore offer to keep track
of the username and password using cookies. Cookies, as you probably remember, are small
pieces of text a server sends to the browser. A cookie with an expiration date is saved on the
hard disk and is returned to the server every time the user visits the same site until the cookie
expires. So is this feature a good thing? Not really, as it amounts to the same security risk as
writing down the username and password in a file. Even greater, since anyone with access to
the user's computer doesn't even have to find the mypasswords.txt file; the browser takes care
of sending the credentials automatically. But for sites that use authentication mainly to
provide personalization and don't contain sensitive data, using cookies can be an appreciated
tool.

This example shows how it can be done. If you decide to use it, make sure you make it
optional so the user can opt out. As you may recall from Chapter 8, all cookies can be read
using the cookies property of the request object available through the implicit
pageContext variable. When you know the name of the cookie you're looking for, it's
easier to use the implicit cookie variable. This variable contains a collection of
javax.servlet.http.Cookie objects, which can be used as beans with the properties
name and value. The value property is used in Example 12-2 to set the value of the input
fields for the username and the password to the values received as cookies.

Name:

<input name="userName"
value="<c:out value="${cookie.userName.value}" />"
size="10">

Password:

<input type="password" name="password"
value="<c:out value="${cookie.password.value}" />"
size="10">

The last part of the form creates a checkbox that lets the user decide if cookies should be used
or not. A <c:1if> action tests if one of the cookies is available and adds the checked attribute
for the checkbox if it is:

Remember my name and password:
<input type="checkbox" name="remember"
<c:if test="${'empty cookie.userName}">checked</c:if>>

189

Chapter 12. Authentication and Personalization

This snippet means that a user who has previously opted for cookie-based tracking gets the
checkbox checked, but a first time user doesn't. It's a good strategy, because it forces the user
to "opt in."

12.2.3 Authentication Using a Database

To authenticate a user, you need access to information about the registered users. For the
sample application in this chapter, all user information is kept in a database. There are other
options, including flat files and LDAP directories. When a user fills out the login-page form
and clicks Enter, the authentication page shown in Example 12-3 is processed. This is a large
page, so each part is discussed in detail after the complete page.

Example 12-3. Authentication page (authenticate.jsp)

<%Q@ taglib prefix="c" uri="http://java.sun.com/jstl/core" %>
<%Q@ taglib prefix="sqgl" uri="http://java.sun.com/jstl/sqgl" %>
<%@ taglib prefix="ora" uri="orataglib" %>

<%-- Remove the validUser session bean, if any --%>
<c:remove var="validUser" />

<c:1f test="S${empty param.userName || empty param.password}">
<c:redirect url="login.jsp" >
<c:param name="errorMsg"

value="You must enter a User Name and Password." />
</c:redirect>
</c:if>

<%--
See if the user name and password combination is valid. If not,
redirect back to the login page with a message.
-=%>
<sgl:query var="empInfo">
SELECT * FROM Employee
WHERE UserName = ? AND Password = ?
<sqgl:param value="${param.userName}" />
<sgl:param value="${param.password}" />
</sqgl:query>

<c:if test="${empInfo.rowCount == 0}">
<c:redirect url="login.jsp" >
<c:param name="errorMsg"
value="The User Name or Password you entered is not valid." />
</c:redirect>
</c:if>

<%--
Create an EmployeeBean and save it in
the session scope and redirect to the appropriate page.
-=%>
<c:set var="dbValues" value="${empInfo.rows[0]}" />
<jsp:useBean id="validUser" scope="session"
class="com.ora.jsp.beans.emp.EmployeeBean" >
<c:set target="${validUser}" property="userName"
value="${dbValues.UserName}" />
<c:set target="${validUser}" property="firstName"
value="${dbValues.FirstName}" />
<c:set target="${validUser}" property="lastName"
value="${dbValues.LastName}" />
<c:set target="${validUser}" property="dept"
value="${dbValues.Dept}" />
<c:set target="${validUser}" property="empDate"
value="${dbValues.EmpDate}" />

190

Chapter 12. Authentication and Personalization

<c:set target="${validUser}" property="emailAddr"
value="S${dbvalues.EmailAddr}" />
</jsp:useBean>

<%-- Add the projects --%>
<sgl:query var="empProjects">
SELECT * FROM EmployeeProjects
WHERE UserName = ?
<sgl:param value="${param.userName}" />
</sqgl:query>

<c:forEach items="${empProjects.rows}" var="project">
<c:set target="${validUser}" property="project"
value="${project.ProjectName}" />

</c:forEach>

<c:choose>
<c:when test="${!empty param.remember}">
<ora:addCookie name="userName"
value="${param.userName}"
maxAge="2592000" />
<ora:addCookie name="password"
value="${param.password}"
maxAge="2592000" />
</c:when>
<c:otherwise>
<ora:addCookie name="userName"
value="${param.userName}"
maxAge="0" />
<ora:addCookie name="password"
value="${param.password}"
maxAge="0" />
</c:otherwise>
</c:choose>

<%--
Redirect to the main page or to the original URL, if
invoked as a result of a access attempt to a protected
page.
-=%>
<c:choose>
<c:when test="${!empty param.origURL}">
<c:redirect url="${param.origURL}" />
</c:when>
<c:otherwise>
<c:redirect url="main.jsp" />
</c:otherwise>
</c:choose>

The first thing that happens in Example 12-3 is that the JSTL <c:remove> action
(Table 12-3) removes a session scope variable named validUser, if it exists.

This variable holds an EmployeeBean object, and its presence in the session scope indicates
that the corresponding user has logged in successfully. If an EmployeeBean object is
already present in the session scope, it may represent a user that forgot to log out, so it's
important to remove it when a new login attempt is made.

191

Chapter 12. Authentication and Personalization

Table 12-3. Attributes for JSTL <c:remove>

Attribute |Java Dynamic o
value Description
name type
accepted
var string |[No Mandatory. The name of the variable to remove.
Optional. The scope where the variable shall be removed,
ccope string INo one of page, request, ses.51on, or application.
Default is to remove the variable from the first scope
where it's found.

Next, a <c:1if> action makes sure that both the username and the password parameters are
received. If one or both parameters are missing, the <c: redirect> action redirects back to
the login page again. Here you see how the error